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Introduction

 Please don’t hesitate to ask questions during my presentation!

 Topics
• Introduction
• Field equations
• Wave equation
• Non-linear ultrasound
• Rayleigh
• Heterogeneous media

o Forward problem
o Inverse problem
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Introduction

[1] www.philips.com
[2] Erasmus MC, Rotterdam, the Netherlands
[3] Wiskin, et al. ”Full wave 3D inverse scattering transmission ultrasound …,” Sci Rep 10, 20166 (2020)
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Introduction

• Field radiated by a point source / acoustic monopole [1]

[1] http://resource.isvr.soton.ac.uk/spcg/tutorial/tutorial/Tutorial_files/Web-basics-pointsources.htm

4



Introduction

• Two plane waves with different velocities [1]

[1] http://resource.isvr.soton.ac.uk/spcg/tutorial/tutorial/Tutorial_files/Web-basics-frequency.htm

5



Acoustic Field Equations
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1-D Acoustic Field Equation – Hooke’s Law
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an excess pressure field  and 
volume injection :
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3-D Acoustic Field Equation – Hooke’s Law
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1-D Acoustic Field Equation – Newton's Law
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Acoustic Field Equations
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Wave Equation
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Helmholtz Equation
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Frequency domain Acoustic Field Equations
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Spherical Waves
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http://upload.wikimedia.org/wikipedia/commons/1/1a/Fourier_series_square_wave_circles_animation.gif

Plane Waves

Any pulse can be described by a 
combination of sine and cosine functions:
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Plane Waves – Acoustic Impedance
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Boundary Conditions
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Imaging

An acoustic contrast gives rise to a reflected wave. By measuring the time 
between transmission and reception of the acoustic wave the distance to the 
object can be measured.

Image taken from J.L. Prince and J. Links, "Medical Imaging Signals and Systems", Prentice Hall (2005)
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Beam forming

20

Image taken from Tan et al. “High intensity ultrasound phased array for surgical applications.”
2006 International Conference on Biomedical and Pharmaceutical Engineering (2006): 564-568.



Beam forming
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Non-linear Ultrasound

Arrays are used to steer the beam into a certain direction.

Due to the finite size of the elements and the spacing in between elements,
side and grating lobes occur, leading to a blurring of the image.

1 MHz
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Non-Linear Ultrasound
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Non-Linear Ultrasound
,

, , ,

For small amplitude acoustics  experiments show that these assumptions are valid.

However  for high amplitude pressure fields  this approximation is no longer valid  
moreover the volume density of mass

( ) ( ) ( ) [ ]
0

0 0

1
0 0 0 0 0 0

0
0

( )

( ) ( )

1 ( ) 1 ( )

1

  may be approximated by

       

                                                                        

p p

p

p p p
p

p V const p p p p p p
p

p

γ γ γ

ρ

ρρ ρ

ρρ ρ ρ ρ ρ κ
γ

γ
κ

−

− − −

∂
= + − ∂ 

∂ ∆ = ⇒ = ⇒ = ⇒ = + −∂ 


= 


[ ]0 0 0

( )

( ) 1 (1 2 )( )

A similar expression may be obtained for the compressibilitiy 

                                   

with  the coefficient of non-linearity.

p

p p p

κ

κ κ κ β

β

= + − −



24



Non-Linear Ultrasound
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Combination of the second order approximations yields
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Hence, for 

  - increasing pressure we observe an increase in speed of sound 

  - decreasing pressure we observe an decrease in speed of sound 
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is leads to a change of the shape of the waveform of the wavefield.
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Non-Linear Ultrasound
Propagation (function of time) of intense acoustic wave that is sinusoidal at the source. 
(a)  x = 0 source waveform,    (b)  distortion becoming noticeable,    
(c)  x = x shock formation,   (d)  x = (π/2)x maximum shock amplitude, 
(e)  x = 3x full sawtooth shape,   (f)  decaying sawtooth,  
(g)  shock beginning to disperse,  (h)  old age. 

[1] J. A. Shooter et al., Acoustic saturation of spherical waves in water, J. Acous. Soc. Amer., 55:54–62, 1974
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Non-Linear Ultrasound

The non-linear propagation leads to a steepening of the waveform. 
In the frequency domain this corresponds to the formation of higher harmonic 
components.

Linear
ultrasound

Non-linear
ultrasound
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Non-Linear Ultrasound

The non-linear propagation leads to a steepening of the waveform. 
In the frequency domain this corresponds to the formation of harmonic components.
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Non-Linear Ultrasound

[ ]
[ ]

0 0 0

0 0 0

( ) 1 ( ) ,

( ) 1 (1 2 )( ) ,
0, 0,

Combination of the second order approximations 
                          
                         
with Hooke's law  and Newtons law 
leads 

t t

p p p

p p p
v D p p D v

ρ ρ κ

κ κ κ β
ρ κ

= + −

= + − −

∇ + = ∇ + =

[ ]( )( )
[ ]( )( )

0 0 0

0 0 0

1 ( ) 0

1 (1 2 )( ) 0.

to the following set of equations
             

      

Combining the above set of equations and neglecting terms of third order and higher 
yields a 

t

t

v p p v p

p p p v v

ρ κ

κ κ β

∇ + + − ∂ + ⋅∇ =

∇ + + − − ∂ + ⋅∇ =

2 2 2 2
2 4

0 0

1

 ( :

                       t tp p p
c c

β
ρ

∇ − ∂ = − ∂

second - order non - linear wave equation Westervelt equation)

29



Non-Linear Ultrasound

Various methods exist to model non-linear ultrasound. If the nonlinearity 
is weak, the additional term may be considered as a contrast source. Next, 
a solution for the Westervelt equation, i.e.

       2 2 2 2
2 4

0 0

1
( , ) ( , ) ( , ) ( , ),

ˆ ˆ( , ) ( , ) ( '
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Non-Linear Ultrasound

Cardiac Imaging is a well known 
application for harmonic imaging, as 
the harmonic components are formed 
behind the ribs:

- no reflections from the ribs;

- a narrow beam profile.



Non-linear Ultrasound

The non-linear propagation is also used to suppress side lobes which 
are mainly present within the fundamental component.

1 MHz 3 MHz2 MHz



Beam Steering in 3-D

3 MHz 6 MHz
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Non-linear Ultrasound

The non-linear propagation is also used to suppress side lobes which 
are mainly present within the fundamental component.

LV

LARA

RV Mitraa
l klep

Latera
le 
wand
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Christiaan Huygens

14 April 1629 (The Hague)
8 July 1695 (The Hague)

Augustin Jean Fresnel

10 May 1788 (Broglie)
14 July 1827 (Ville-d'Avray)

Gustav Robert Kirchhoff

12 March 1824 
         (Koningsbergen)
17 Oct. 1887 (Berlin)

George Green

14 July 1793 (Sneinton)
31 May 1841 (Sneinton)

[1] http://nl.wikipedia.org/wiki/Christiaan_Huygens
[2] http://nl.wikipedia.org/wiki/Augustin_Jean_Fresnel
[3] http://www.nottingham.ac.uk/physics/about/history/george-green.aspx
[4] http://nl.wikipedia.org/wiki/Gustav_Robert_Kirchhoff
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(Huygens – Fresnel) – Green – Kirchhoff – Rayleigh

• Wave-fields can be calculated as a function of space and time, from known values along 
a (closed) boundary.

• The oldest formulation of this process is Huygens' Principle.  Later, Fresnel gave a more 
mathematical, but still somewhat heuristic description of wave-field extrapolation.

• Mathematically exact extrapolation of wave-fields is accomplished with the help of 
Kirchhoff and Rayleigh integrals, which are based on Green's Theorem.

• The extrapolation algorithm is based on the wave equation and the causality of the wave 
propagation.

• Wave-fields can be extrapolated forward and backward in time and space.

36



Green’s Theorem
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Kirchhoff Integral
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Kirchhoff Integral
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′= +

∫

( ) ( )ˆ
4 4

i c i ce e p n
ωε ωε

ε πε πε

− − 
  
 

∂ ′− ∇ ⋅
∂

( )

2
2

0 0
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1lim ˆ      A

d d
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c

π π

ε

ε ϑ ϕ ϑ

ω
ε ε→
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∫ ∫
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2
2
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ˆ ˆˆ ˆ ˆ

1 sin
4

ˆ

ˆ ( , , )
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This is the  where

                  is called the .
A

A
S

A

r r

A
A

i c

i c

p r p G G p n dS

e d d

p r

eG r r
r r

π π
ωε

ω

ε ϑ ϕ ϑ
π

ω
π

−

− −

  
  
   

= − ∇ − ∇ ⋅

= −

⇒

=
−

∫

∫ ∫



Kirchhoff  integral,

Green's function

S

V ′

n

Ar
S′

ε
n′
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Kirchhoff Integral
( ) ( )ˆ ˆˆ ˆ ˆ

ˆ ( , )

ˆ

                ( point   inside  ) 

   The   is the field of a point source located at  with delta-pulse wave-form

   The field  does not co-exis

A
S

A

p r p G G p n dS A S

G r r

G

ω

= − ∇ − ∇ ⋅

•

•

∫
Green's function .

( )

ˆ

,ˆ

t with  in the same experiment. It is only introduced 
     mathematically through Green's theorem.

   The Kirchhoff integral allows us to calculate the wave field  at position  , 
     from re

A

p

p r rω•

( )

( )

ˆ ˆ

ˆ ˆ

cordings of  and  along any closed surface  around .

   Application of the Kirchhoff integral can be cumbersome because:
   -   we need recordings for both  and  ,
   -   we need recording

n

n

p p S A

p p

∇

•

∇

s along a closed surface.

   Under some limiting conditions there is a trick to be applied that circumvents 
     both problems simultaneously.
•
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Rayleigh Integral

( ) ( )
( )

2
2

2

ˆ ˆ,ˆ ˆ ˆ

ˆ ,

ˆ ˆ 0

In the Kirchhoff integral: 

                      

there is a degree of freedom, since for any function that satisfies:

                                       

A
S

p r p G G p n dS

r

c

ω

ω
ω

= − ∇ − ∇ ⋅

Γ

∇ Γ + Γ =

∫

( ) ( ) ( )

2 2ˆ ˆ ˆ ˆ 0ˆ

ˆ ˆˆ

ˆ

ˆ

ˆ ˆ

ˆˆ ˆ

Obviously this is the case beca

 

everywhere inside , we can write

use:

           

:

           

 

 
S

V

A

S

S

p

p p n d

r p G G p n dS

S p p dV   ∇Γ − Γ∇ ⋅ =

 = − ∇

∇ Γ − Γ∇ =   

+ Γ − + Γ ∇ ⋅ 

∫ ∫

∫
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Rayleigh Integral

( ) ( ) ( )ˆ ˆˆ ˆˆ ˆ ˆ,

ˆ ˆ

We want to use the function  in the Kirchhoff integral:

         

in such a way that either the term with  or the term with  vanishes 
over the relevant part of 

A
S

p r p G G p n dS

p p

ω

Γ

 = − ∇ + Γ − + Γ ∇ ⋅ 

∇

∫

ˆ

.

What the relevant part of  is depends on where the sources are that generated 
the wave field  and whether we want to predict forward or backward in time.

If there are sources in all directions fro

S

S
p

ˆ
m the point  , the whole closed surface  is relevant 

and there exists no suitable choice for  that simplifies the Kirchhoff integral.
A S

Γ
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Rayleigh Integral

( ) ( ) ( )ˆ ˆˆ ˆˆ ˆ ˆ,A
S

p r p G G p n dSω  = − ∇ + Γ − + Γ ∇ ⋅ ∫

1S

0S

A
R

( ),Ap r t

( )1
,Sp r t R c−

( )0 0
,S S Ap r t r r c− − 0S

A

A′

Ar r−

Ar r ′−

V

n

( ) ( )ˆ ˆˆ ˆ,A
S

p r p G n dSω = − ∇ + Γ ⋅ ←∫

( ) ( )ˆ ˆˆ ˆ,A
S

p r G p n dSω  = + Γ ∇ ⋅ ← ∫ 0
ˆ ˆ( ) ( ) 0G r r r S ∇ + Γ = ∈   for all   (Rayleigh I)

0
ˆ ˆ( ) ( ) 0G r r r S+ Γ = ∈ for all   (Rayleigh II)
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Rayleigh II Integral

( )

0

0

ˆ 0

ˆ

ˆ ,
ˆ

We have established that in the case
that all the sources of the field  are
below the plane  , we only need to
integrate over  .

We now try to find a function  

that makes  everywhere on G

p
S

S

r ω

+

Γ

Γ = 0

ˆ
ˆ

:

 .

Recalling that  is the wave field of a point source in point   ,
we can create a wave field  by putting a point-source with a
negative source strength in the mirror point of   .

This is legi

S

G A

A A
Γ

′

( )2 2 2

ˆ
ˆ ˆ 0

timate because then the field  is not created by sources
inside  and so satisfies the equation       
everywhere inside .

V c
V

ω
Γ
∇ Γ + Γ =

0S

A

A′

Ar r−

Ar r ′−

V

n
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Rayleigh II Integral

( ) ( )[ ]

( )

( ) ( ) ( )

0

0

2 2 2

0
ˆ ˆ 0

ˆ ˆˆ ˆ

ˆ ˆ( )
4 4

,

A

S

A A

A A A A

A

A Ai r r c i r r c

r SG
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e e
G r r
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′

′− − − −

∈+ Γ =

= − ∇ + Γ ⋅

= Γ = −
− −

− = − + − + −

− =

∫



ω ω

π π

If  the Kirchhoff integral reduces to:

         

with:

       and    

where:

           

           ( ) ( ) ( )

( ) ( )

2 2 2

0

0

ˆ ˆˆ ˆ0

A A A

A A

z

x x y y z z

S

z r r r r G n G
z

′

=

− + − + +

∂
= − = − ∇ + Γ ⋅ = − + Γ

∂

 
  

On  we have:

       ,       and    

0S

A

A′

Ar r−

Ar r ′−

V

n

z
↑
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Rayleigh II Integral

( ) ( )

( )

3

3

3
0

1
4 4

1
4 4

1ˆ ˆ
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ˆ ˆ,
2

A A

A A
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i r r c i r r c
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−−∂
= − +

∂ − −

−+∂
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∂ − −

+ ∆∂
+ Γ =

∂ ∆
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ω ω

ω ω

ω

ω
π π

ω
π π

ω

π

ω
π

  

  

          

      ( )

( ) ( )

3

2 2 2

, , 0; 1

A A A

i r cr e
x y i dxdy

c r

r x x y y z

∞ ∞

−∞ −∞

− ∆∆
+

∆

∆ = − + − +

 
 
 ∫ ∫

ω

ω ω

This is the               
     .       

.

 

Rayleigh II integral

0S

A

r∆

z
Az

( ),x y ( ),A Ax y
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Rayleigh Integral



Rayleigh II example
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Rayleigh I Integral

( ) ( ) ( )[ ]

( )

( )

ˆ

ˆ ˆˆ ˆˆ ˆ ˆ,

ˆ ˆˆ

ˆ ˆ( )
4 4

An alternative choice for  in the Kirchhoff integral 

will cancel the term   .

By choosing:

    and    

we obtain the 
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∇ + Γ
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ˆ ,

2
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z

A A A
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r z

r x x y y z

ω

ω
π

∞ ∞

=−∞ −∞

− ∆ ∂
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∆ ∂
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 ∫ ∫

yleigh I integral
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Rayleigh Integral



Helmholtz equation in the (kx,ky)-domain

( )

( ) ( ) ( )

( )

2

, , ;ˆ

, ; ; , , ;ˆ

,

ˆ ˆ2 2

We define the double spatial Fourier transform of  :   

So, double Fourier transformation of the Helmholtz equation to the -domain:

x y
x y

x y

i k x k y

p x y z

p k k z e p x y z dxdy

k k

p p
x

ω

ω ω
∞ ∞

−∞ −∞

+
≡

∂ ∂
+

∂ ∂

∫ ∫



( )

2 2
2 2

2 2 2 2 2

2 2 2 2
2

ˆ 0 0ˆ

0 .

2 2

2

with  ,  we get:   

x y

z x y z

p pp k k p
y z c z c

pk c k k k p
z

ω ω

ω

 ∂ ∂
+ + = ⇒ + − − = ∂ ∂  

∂
≡ − − + =

∂
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Helmholtz equation in the (kx,ky)-domain

( )

( )

0

2
2 2 2

2 2

, , ;

0
2

Let us consider a wave field   , generated by sources below the    plane.

Then the source-free Helmholtz equation:

                    with:      

is valid

x y

z z x y

p k k z z z

p k p k k k
z c

ω

ω

=

∂
+ = = − +

∂













( ) ( )

0

0

0 0, , ; , , ;     

 for all   .

Since waves are travelling in the positive  direction only, the above
differential equation in  is readily solved for  , by:

          ,   z
x y x y

ik z

z z

z
z z z

p k k z z p k k z eω ω − ∆

≥

≥

+ ∆ = 

 

( )0

0

0

, , ;

  

   

where    represents the double spatial Fourier 

transform of the observations made in the    plane.

The factor  is the multiplicative forward extrapolation operator in t

x y

zik z

z

p k k z

z z

e

ω

∆−

∆ >

=





( ), ,he  -domain.x yk k z
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Evanescent Field

( ) ( )

( ) ( )

2

2

2 2

2 2 2 2

2 2

2 2 2

2 2

z x y x y

z
x y zik z

x y

c k k

c

k k k i k k
c c

e e

k k

ω

ω

ω ω

± ∆− ∆ − +

>

= − + = ± − +

=

+For     , we have

                   

and:                       
                         

As the plus sign would be physically unacceptab

( ) ( ) ( ) ( )

( )

2

2 2

0 2

2 2

0

2 22

2 2

0

, , ; , , ;

, , ;

x y x y x y

x y

x yc k k z

x y

z

p k k z p k k z e k k
c

p k k z k k c

z

ω ω
ω ω

ω ω

− − + ∆

∆ ≥

= + >

+ >

∆

 

 





le in the half space  , we get:

      ,    

Any energy in    for which  , dies out

very quickly with increasing   .  This is called the  field.evanescent
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Evanescent Field

2 2
x yk k+ →

ω
↓

cc−

Evanescent
    field

1

cω 2 2
x yk k+ →0

Propagating
waves

0

( )( )2 2 2 .

The evanescent field is observable only in 2-D plane-wave decompositions of wave-fields 

remembe   r z x yk c k kω≡ − −

( )2 2 2

x yi z c k k
e

ω− − −
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Example

( )
0

, , ; , , 0x y x y

z a z

p k k z a p k k zω

= =

= = = 

 

This technique can be used to reconstruct the velocity profile of an ultrasound transducer.

The pressure field at  can be obtained from measurements at  as follows: 

   ( )
2 2 2

2 2 2 2 2 2
2 2 2

;

, .

0 ,

z

z x y z x y x y

ik ae

k k k k i k k k k
c c c

z z a

ω

ω ω ω

−

= − − = − − − < +

= =

   ,   

with   or   if  

                                      To obtain the field at  from measurements at  

                                

( ) ( )
2

2
2

, , 0 ; , , ; .

z

z
x y x y

z x

ik a

ik a

e

p k k z p k k z a e

k i k k
c

ω ω

ω

−

+= = =

= − − −

 

 

      means we devide by , i.e.

                                             

                                      However, problems arise for  
2

2 2 2
2 .y x yk k

c
ω

< + if 



Example

Reconstruction of the velocity profile of a damaged IVUS transducer.
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Heterogeneous Media

• Incident, scattered and total field
• Forward and inverse problem

( )ˆ ,incp r ω

SOURCE RECEIVER

c0
( ) ( )ˆ ˆ, ,tot incp r p rω ω=

( )ˆ ,srcq r ω

( )ˆ ,sctp r ω

( )ˆ ,incp r ω

SOURCE RECEIVER

c0

c(r)≠c0

( ) ( ) ( )ˆ ˆ ˆ, , ,tot inc sctp r p r p rω ω ω= +

( )ˆ ,srcq r ω

57



Heterogeneous Media – Field Equations

( ) ( ) ( ){ }
( )

( ){ } ( ){ } ( ){ }
( )

( )

2 2
02

0

2
2

2

2
0 0 0

0

, ,

1, , , (

ˆ

( , ),

,

,)t t t t

pr csS r t S r t

rp r t p r t q r t f r t
c

p r
c

p r t r v r tρ κ κ ρ ρρ

ωω

∇ − ∂ = − ∂ −∇ −

∇ +

 − ∂ −∇ − ∂ 




 

Combining the above field equations yield the following wave equation

or

( ) ( ){ } ( ){ } ( ){ } ( ){ }2
0 0 0 0

ˆˆ ˆ ˆ ˆ, , ( , ) ( , ) ,p r i q r f r r p r r i v rω ρ ω ω ω ρ κ κ ω ω ρ ρ ω ω = − −∇ − − − −∇ − 

( ) ( ){ }
0

0

( , ) ( , )
( , ) ( , ) ( , )

( , )

For heterogeneous media, the acoustic media parameters become spatially varying.
Consequently, the resulting field equations read

Hooke's law: t
t

v r t p r t
v r t p r t q r t

q t
r

r r

κ
κ

κ κ− ∂

∇ ⋅ + ∂
∇ ⋅ + ∂ = ⇒

= +

( ) ( ) ( )
( ) ( )

( ){ } ( )
0

0

)

( , )

,

, ,
, , ( ,

( , )
Newton's law:

t

t

t
t

p r t

r
r v r t

p r t v r t
p r t v r t f r t

f r t

ρ
ρ

ρ ρ

∇ + ∂
∇ + ∂ =

− ∂
⇒

= +
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Heterogeneous Media – Field Equations

( ) ( ){ }
0

0

( , ) ( , )
( , ) ( , ) ( , )

( , ) t

t
t

v r t p r t
v r t p r t q r t

q
r

rr t

∇⋅ + ∂
∇ ⋅ + ∂ ⇒

= + −
=

∂

Typically, spatial variations in the volume density of mass are neglected.
Consequently, the resulting field equations will read

Hooke's law:
κ

κ
κ κ

( ) ( ) ( )
( ) ( )

( ){ } ( )
0

0

, ,
, , ( ,

(

)
( , )

, )

,t
t

t

p r t

r
p r t v r t

p r t v r t f
r v

r t
t rf r t

∇ + ∂
∇ + ∂ =

∂
⇒

= + −
Newton's law:

ρ
ρ

ρ ρ

( ) ( ) ( ){ }
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( ) ( ){ } ( )2
0

2 2
0

0
22 2

0
,

1, , 1 1 ( , ) ,, ( , )

Combining the above field equations yield the following wave equation

t t tt

prS r t

p r t p r p rt t r v r tq r t f r t
cc c r

ρ ρ ρ
 

∇ − ∂  − ∂ −= − ∂ −∇ ∇ − ∂   
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Heterogeneous Media – Integral Equation
ˆ ( , )

4

i r ceG r
r

ω

ω
π

−

=Green's function  represents the field generated by a Dirac delta source.

( )

( )
'

',

ˆˆ ( , ) ( ', ) ', ( ').

pr

inc
pr

r D

S r t

p r G r r S r t dV r
∈

−∫

Hence, the field generated by the primary sources  may be obtained 
by spatially convolving them with Green's function, hence

                            = ω ω

Based on the principle of superposition, one could argue that each contrast 
acts as a source generating an acoustic field. Adding all these fields together yields
the following integral equation (Fredh

( ) ( ) ( )
2

2 2
0'

1 1ˆˆ ˆ ˆ( , ) ( , ) ( ', ) ' ( ', ) ( ') ' .
'

olm integral equation of the second kind)

       with  inc

r D

p r p r G r r r p r dV r r
c r c

ω ω ω χ ω ω χ
∈

= + − = −∫
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Heterogeneous Media – Integral Equation

• Forward problem: sources and contrast are known, 
   total/actual field is unknown
   => linear problem

• Inverse problem: sources are known, 
   total/actual field is known at the boundary, 
   contrast and field in ROI is unknown.
   => non-linear problem

• Green’s function is defined for the background medium.
     However, there is a freedom to choose it heterogeneous or homogeneous.     
     Obvious choice is  to choose a background for which we have an analytical 
     expression of the Green’s function (or the incident field).
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WKBJ = Wentzel – Kramers – Brillouin – Jeffreys



Acoustic wave equation – Forward Problem
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2 2
2( , ) ( , )1 ( , )
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Wave equation:           pr
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c x
∇ − ∂ = −
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2( ) ( ') ( ')( ) ( ') ( ') ( )

4 | |

Integral equation:
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00 ( , , )( , , ) ( ) / 2

Parabolic approximation:
   with       zik

x y z mean x y mey ax np k k z p k k z e k k k k k− ∆= =+ ∆ + +

1( ds( )
)

)
(

x
c

t
xβ γ =∆ ∫Radon transform:           



And many more ….



Born Approximation

( )

( ) 2

'

ˆˆ ˆ ˆ( , ) ( , ) ( ', ) ' ( ', ) ( ')

ˆ ˆ

If the contrast   , or  , or  are small enough, the integral equation:

            

can be linearised in the contrast   by replacing  with  
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r D
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p r p r G r r r p r dV r
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χ ω

ω ω ω χ ω ω

χ

∈

= + −∫

( ) 2
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ˆˆ ˆ( , ) ( , ) ( ' ˆ (, ) ' ( ')

ˆ
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 in
the right-hand side of the equation.  We then get:

            

from which  can be evaluated directly.  This is called the 

i
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inc

r
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D

p r p r G r r r dV r

p

p rω ω ω χ ω ω
∈

= + −∫

Born approximation.
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Neumann Series

( )1ˆ

The Born approximation can be seen as the first step in an iterative solution method.  

The total field resulting from the Born approximation, , can be substituted on the 

right-hand side of the inte

p
( )

( ) ( ) ( )

2

2 12

'

ˆ

ˆˆ ˆ ˆ( , ) ( , ) ( ', ) ' ( ', ) ( ')

ˆ

gral equation, to obtain the next iteration result   , 
towards a solution of the full integral equation:

                

The resulting values 

inc

r D

p

p r p r G r r r p r dV rω ω ω χ ω ω
∈

= + −∫

( ) ( ) ( )1 2ˆ ˆ, ,..., , form a series, which is called the .  

For strong contrasts, the iterative scheme may diverge from the true solution resulting
in a need for more advanced iterative solut

np p p Neumann series

ion methods such as steepest descent or 
conjugate gradient methods.
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Conjugate Gradient Method

( ) 2

'

ˆˆ ˆ ˆ( , ) ( , ) ( ', ) ' ( ', ) ( ')

The integral equation can be rewritten as 

             

which we can recast in an operator equation

                                   p p  G[p]

inc

r D

inc

p r p r G r r r p r dV rω ω ω χ ω ω
∈

= − −

= − =

∫

1

2

L[p].

This equation can be solved iteratively

                                     p p d

by minimizing the L -norm of the error           

                                  Err r p L[p ]    .

Mini

n n n

inc
n n

α−= +

= = −

mizing this error functional using e.g. a CG is known to be very efficient.
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This looks like a vector-matrix problem 
that potentially could be solved 

by computing the inverse:

 b = A x
 x = A-1 b



Transcranial ultrasound
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Imaging and Inversion

Acoustic and elastic wave fields may by used to image the interior of an 
object. Applications vary from:
 - medical imaging (e.g. breast cancer detection)
 - seismic surveys for the oil and gas industry
 - Non-Destructive Testing (NDT)

Although no real definition exist, 
• imaging is typically a direct method aiming at localizing contrasts, 
• inversion is often an iterative method used for reconstructing acoustic 

medium parameters.
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Imaging and Inversion

Imaging and Inversion starts with probing the volume of interest with an 
acoustic wave field.
To test different imaging and inversion methods we start with a simple 
example; a cancerous breast probed with an 0.1 MHz pulse.



Tissue

Forward Problem
Synthetic data is obtained by solving the forward problem.

Snapshot of 
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Speed of 
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Time of Flight Reconstruction

Due to its success with CT-scans, tomographic reconstructions methods are 
applied where it is assumed that the wave field travels along a “straight” path 
from source to receiver.
Variations in travel times are explained by a spatially varying speed of sound. 
Computing these variations in travel time is referred to as a Radon transform.
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Time of Flight Reconstruction

A speed of sound profile may be obtained via the Inverse Radon transform; 
alternatives are algebraic reconstruction, or inverse Eikonal methods.
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Tissue

Forward Problem
Synthetic data is obtained by solving the forward problem.

Snapshot of 
incident field

Snapshot of 
total field

A-scan of 
incident field

A-scan of 
total field

Ring with 
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Primary
reflections

Speed of 
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Synthetic Aperture Focussing Technique

• SAFT is a fast method with the disadvantage that it does not correct for 
geometrical spreading and radiation patterns.

• Imaging reflections only.

transducer

tumor

Image taken from J.L. Prince and J. Links, "Medical Imaging Signals and Systems", Prentice Hall (2005)
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Nsrc = 157
Nrec = 38

Imaging: SAFT / SAR / DAS
Synthetic Aperture Focusing Technique 
Synthetic Aperture Radar
Delay and Sum



Imaging by Inversion 

( ) ( ) ( ) 2ˆ ˆ, , ˆ ,

Imaging of acoustic data is an inverse problem.  

For imaging heterogeneous media we want to invert the scatter integral equation:
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Regularisation

• Inversion for the contrasts of the scattering integral equation is usually an 
ill-posed problem, by which we mean that the inversion is numerically 
unstable. Small variations in the measured response may give large 
variations in the contrasts.  

• This is even the case under the Born approximation.

• The problem is alleviated by regularisation (and stabilisation).

• By regularisation is meant introduction of a priori knowledge on the 
distribution of the parameters in the solution space.  We can impose 
sparseness, smoothness, flatness, or any other characteristic of the 
solution space that we have reason to believe to apply.
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Linear or Born Inversion
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Linear or Born Inversion

• Linear Inversion is an unstable process due to the Born-approximation.
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Linear or Born Inversion
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Linear or Born Inversion
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Linear or Born Inversion
3 3
4 4

:

  Two distinct cylinders of  at  apart
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Linear or Born Inversion

Born inversion is unstable. Consequently, it is very sensitive for noise in the data. 

To stabilise the inversion, regularization is required. A succesfull aproach is
by taking the  (TV) total variation

22

2

22
, ,

1

* [ ]

of the reconstructed profile into account. 

Consequently, the error functional for regularized Born inversion reads
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Born and Regularized Born Inversion

Original profile

n = 1n = 2n = 4n = 8n = 16n = 32n = 64n = 128n = 256n = 512n = 1024

Regularised Born Inversion

Born Inversion



Tissue

Forward Problem
Synthetic data is obtained by solving the forward problem.

Snapshot of 
incident field

Snapshot of 
total field
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Entire
waveform

Speed of 
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Non-Linear Inversion

2ˆˆ ˆ( , ) ( , ) ( ' ) ˆ( ', ) ( ', )to c tt in otp r p r G r r Vr p rω ω ω ω χ ω= − −∫

With full-waveform non-linear inversion the original / complete integral equation 
(or wave equation) is solved:

d

However, as there are multiple unknowns the problem is highly non-linear.

Various approaches have been tested in the past such as Modified Gradient 
and Contrast Source Inversion (CSI).
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Non-Linear Inversion
2

2

2

( ) ( ) ( ')

ˆˆ ˆ( ) ( ) ( ')

ˆˆ ˆ( ) ( )

'

(

)

') ( ')

( ')

ˆ (

)

'' )

ˆ

ˆ

(

(

(

tot inc

tot inc

tot inc tot

t

inc

nc

to

i

r

p r

p r p r G r r V

p r p r G r r V

p rr p r G r w

r p r

r

r V p p Gw

w

ω

ω

χ

χ

ω

= − −

= − −

= − − = − ∗

∫

∫

∫

d

Born Approximation:

d

Fullwave non-linear CSI inversion:

d        

( )1

1

(') ( ' ˆ ')) tot tot

inctot inc
n n nn

n inc inc
n

p r w p

w
r

r

p G wp p G w
E r

p p

χ χ

χ

χ
−

−

= =

− − ∗− + ∗
= +

86



Non-Linear Inversion

• Non-linear Inversion is a stable process as it uses the full wave equation.
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Non-Linear Inversion
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Non-Linear Inversion
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Multi-parameter Inversion
In reality, there are contrasts in both compressibility and density, besides 
attenuation. By taking the velocity field into account it is feasible to 
reconstruct for both medium parameters.

92

If needed, the velocity profile can be reconstructed from the pressure field!
U. Taskin et al, "Redatuming of 2-D Breast Ultrasound,"  IEEE Trans Ultrason Ferroelectr Freq Control 67(1)
U. Taskin et al, "Multi-parameter inversion with the aid of particle velocity field reconstruction," JASA 47(6) 
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B. Malik, et al. "Objective breast tissue image classification using
Quantitative Transmission ultrasound tomography," Scientific Reports, 2016

• QT Ultrasound
- Based on 13 breasts
- Tissue parameters only (?)

• Problems will occur to apply 
    method to different systems

• Delphinus: 
Tissue parameters and 
Texture.

Machine learning for tissue classification



Machine learning for inversion
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On synthetic data

On real data

Zhao et al 2023, “Simulation-to-real generalization for deep-learning-based refraction-corrected 
ultrasound tomography image reconstruction,” Phys. Med. Biol. 68 (2023)



SAFT – Full-Wave Form Inversion
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Original                Reconstruction 
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Discussion and Conclusion
SAFT

• Echogenicity
• Data volume: N = Nsrc x Nrec x Nt

Born Inversion
• Neglects multiple scattering and phase shifts
• “Speed of sound”
• Convergence
• Data volume: N = Nsrc x Nrec x Nf

Full-Wave Form Inversion
• Inversion of nonlinear  integral equation
• Taking advantage of multiple scattering and phase shifts
• Speed of sound
• Computational heavy
• Data volume: N = Nsrc x Nrec x Nf

96



Recommended Reading
• Ozmen et al, "Comparing different ultrasound imaging methods for breast cancer

detection", IEEE T Ultrason Ferr 62(4), pp. 637-646, 2015.

• Dries Gisolf and Eric Verschuur (2010). The Principles Of Quantitative Acoustical Imaging.
• Jacob T. Fokkema and Peter M. van den Berg (1993). Seismic applications of acoustic 

reciprocity.
• Adrianus T. de Hoop (1995 / 2008). Handbook of Radiation and Scattering of Waves.

• Mark F. Hamilton, David T. Blackstock (2008). Nonlinear Acoustics.

• Richard S.C. Cobbold (2006). Foundations of Biomedical Ultrasound.
• Thomas L. Szabo (2013). Diagnostic Ultrasound Imaging: Inside Out.

97



Acknowledgements

Some of the slides / results presented have been made by:

E. Alles, J. Bakker, P. van den Berg, R. Dapp, L. Demi, G. van Dijk,
D. Gisolf, K. Huijssen, N. Ozmen, A. Ramirez, U. Taskin, E.
Verschuur, M. Verweij

98



References

A majority of the images are based on the following publications:

• U. Taskin and K.W.A. van Dongen, "Multi-parameter inversion with the aid of particle velocity field 
reconstruction," Journal of the Acoustical Society of America 47(6), pp. 4032-4040, May 2020. 

• U. Taskin, J. van der Neut, G. Hartmut and K.W.A. van Dongen, "Redatuming of 2-D Breast Ultrasound," 
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 67(1),  pp. 173-179, January 
2020.

• U. Taskin, N. Ozmen, H. Gemmeke, and K.W.A. van Dongen, “Modeling breast ultrasound; on the 
applicability of commonly made approximations,” Archives of Acoustics 43(3), pp. 425-435, April 2018.

• A.B. Ramirez and K.W.A. van Dongen, “Sparsity Constrained Contrast Source Inversion,” Journal of 
Acoustical Society of America 140(3), 1749-1757, August 2016.

• N. Ozmen, R. Dapp, M. Zapf, H. Gemmeke, N.V. Ruiter and K.W.A. van Dongen, “Comparing different 
ultrasound imaging methods for breast cancer detection,” IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control 62(4), pp. 637-646, April 2015.

• E.J. Alles and K.W.A. van Dongen, “Iterative reconstruction of the transducer surface velocity,” IEEE 
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 60(5), pp. 954-962, May 2013.  

99



Thank you for your attention …
   

and 

enjoy our conference.
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