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Obtain an image from a medium from acoustic reflection measurements
Transmit a sound wave into the medium Measure the response with many channels

Reconstruct an image of 
the medium using 

wave theory

Vertical transect
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[1] …
[2] Erasmus MC, Rotterdam, the Netherlands
[3] http://langeproductions.com/
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[1] https://mtlabs.co.nz/services/non-destructive-testing/
[2] https://www.aerospacetestinginternational.com/features/introduction-to-non-destructive-testing.html
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K. Miura, "Application of Scanning Acoustic Microscopy to Pathological Diagnosis," DOI: 10.5772/63405

Comparative skin images of SOS
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Global seismology  full earth

Tectonic imaging  2-25 km depth 

Oil & gas exploration  0.5-5 km deep

Near surface inspection  5-500 m deep

Ship wreck detection  1-20 m deep 
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100 kHz
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Medical ultrasound  0.2-20 cm deep
Inspections of welds  0.5-5 cm deep 
Laminated materials (e.g. airplanes)  0.5 cm deep
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>50 MHz Acoustic Microscopy
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[1] http://www.mathworks.com/matlabcentral/fileexchange/screenshots/1347/original.jpg
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Field radiated by a point source / acoustic monopole [1]

[1] http://resource.isvr.soton.ac.uk/spcg/tutorial/tutorial/Tutorial_files/Web-basics-pointsources.htm
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Two plane waves with different velocities [1]

[1] http://resource.isvr.soton.ac.uk/spcg/tutorial/tutorial/Tutorial_files/Web-basics-frequency.htm
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1-D Acoustic Field Equation – Hooke’s Law
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The obtained acoustic field equations read

Hooke's law:                (equation of deformation)

Newton's law:                   (equation of motion)
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http://upload.wikimedia.org/wikipedia/commons/1/1a/Fourier_series_square_wave_circles_animation.gif

Helmholtz Equation

Any pulse can be described by a 
combination of sine and cosine functions:
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Spherical Waves
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Green’s functions
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Weak form the Greens function

The 2-D and 3-D Greens function’s are singular for r=0. To gives rise to 
numerical problems when implementing these Green’s functions. These 
problems are solved by using there spherical mean, which is not singular 
at r=0.
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Attenuation
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Attenuation is mainly caused by absorption (the transformation of acoustic energy into e.g. heat),
geometrical spreading and scattering.

There are various ways to include absorption (the transformation of acoustic energy into e.g. heat) 
in the field equations. One approach is to use memory or relaxation functions.

In the presence of these memory functions, the acoustic field equations read
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The mechanism underlying attenuation is amongst others related to the viscocity of the medium.
Note that in general, attenuation is frequency depenent effect and will give rise to dispersion.



Attenuation and Kramers-Kronig relations
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Defining the relaxation functions for the field equations is a difficult process. 

Measurements show that for biomedical tissues attenuation may be described via a 
power law.  However, care has to be taken as these relaxation functions should meet 
the requirements set by nature; 
  - they should be real valued in the time domain and,
  - they should meet the requirements set by causality.
From these r
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See e.g. M. O’Donnell, E. T. Jaynes, and J. G. Miller, “Kramers-Kronig 
relationship between ultrasonic attenuation and phase velocity,” 
J. Acoust. Soc. Amer. 69(3), 696-701 (1981).

Complex wave 
numbers !
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Exercise

• Compute the pressure field generated by a point source (volume 
source density of injection rate)
• Centre frequency Gaussian pulse f0 = 1 MHz;
• Medium water (c = 1500 m/s, ρ = 1000 kg/m3);
• Locate the point source in the centre of a volume (e.g. 0.1 m x 0.1 

m x 0.0015 m).
• Compute the pressure field in the frequency domain and transform the 

resulting field to the time domain using FFT.
• Δx = ?
• Δt = ?
• Nt = ?

30

                   C = 1500 m/s

0.1 m

0.1 m
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Derive the Green's function , or the impulse response of the medium:   
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http://upload.wikimedia.org/wikipedia/commons/1/1a/Fourier_series_square_wave_circles_animation.gif

Plane Waves

Any pulse can be described by a 
combination of sine and cosine functions:
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Plane Waves – Acoustic Impedance

34

( )2 ˆ ,

The concept of describing a pulse using Fourier series can be extended to 
1-D, 2-D and 3-D wave fields, leading to the introduction of plane waves. 

General solutions of the Helmholtz equation, p r ω∇ ( )
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Longitudinal wave propagation
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If we take a pressure wave which travels only in the -direction,
we obtain the following expression:

For this expression, the velocity wave equals  ( )1 ˆ( ) , .
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Generalising this to three dimensions shows that the particle movement is in the direction
of propagation, leading to longitudinal waves.



Impedance Single Outgoing Spherical Wave
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In the frequency domain:

                              

Calculate particle velocity from Newton's law:
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Near and Far Field approximations for Spherical Waves
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spherical waves behave like plane waves.
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Energy of Acoustic Wave
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   Apparently, for plane acoustic waves, pressure and particle
    velocity are in phase.  The proportionality factor  is called
    the acoustic impedance of the medium:

                            

cρ
•
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21 1

0 2 22
0

               

   Kinetic energy density is:   

                                        

    Using:          we have:     

   Because particle veloci

kin

kin pot

Z c

V v

pp c v V p V
c

ρ

δ ρ

ρ δ κ δ
ρ

=

•

′ =

′ ′= = = =

• ty and pressure are in phase, work is
    done.  The work done per unit area, per time-unit, is the power
    carried by a propagating acoustic wave through a unit surface 
    area perpendicular to the direction of propagation.
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0

The instantaneous intensity  of an acoustic wave is equal to the energy flux 
through an unit area with normal  hence

The time-averaged intensity is equal to

1 1

( ) ( )
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ndt

p r ,t v r ,t

ˆ ˆJ r p r ,t v r ,t ndt p r ,ω v r ,ω
π
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∫

∫

0

.

Because both  and  are real valued functions, we use Parseval's theorem 
to express the total energy flow through an unit area in the frequecy domain as 

1
2

n dω
∞

∗

−∞

⋅  ∫

What about dimensions?
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Arrays are used to steer the beam into a certain direction.
Due to the finite size of the elements and the spacing in between elements,
side and grating lobes will occur, leading to a blurring of the image.

1 MHz
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0
0 0 0 0

( )
( ) ( ) ( )

To derive the linear wave equation, three approximations were made

- the volume density of mass was taken to be constant (pressure independent):

                              p
p p p p

p
ρ

ρ ρ
∂

= + −
∂

0p p=

 
 
 

0

0
0 0 0 0

,

( )
( ) ( ) ( )

- the bulk modulus (or compressibility) was taken to be constant (pressure independent):

                             
p p

p
p p p p

p
κ

κ κ
=

∂ 
= + −  ∂ 

( ) ( ) ( )

,

, ,
,

- the convection term of the material derivative was taken to be zero:

                                  
dp r t p r t

v p r t
dt t

∂
≡ + ⋅∇

∂
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,
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For linear acoustics  experiments show that the previous assumptions are valid.

However  for high amplitude pressure fields  this approximation is no longer valid  
moreover the volume density of mass ρ

( ) ( ) ( ) [ ]
0

0 0

0 0 0 0 0 0

0
0

( )

( ) ( )

( ) 1 ( )

1

 may be approximated by
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 similar expression may be obtained for the compressibilitiy 

                                   

with  the coefficient of non-linearity.

p

p p p

κ

κ κ κ β

β

= + − −





Speed of Sound

43

[ ][ ]

2

0 0 0 0

2 2
0 0 0 0

1 ( ) ( )
( )

1 ) 1 (1 2 )

1 2 (1 ) (1 2 ) .

Combination of the second order approximations 

                      

                          

                          

Typical v

p p
c p

p p

p p

κ ρ

κ ρ κ κ β

κ ρ κ β κ β

=

= + + −

 = + − + − 

,
,

alues for  vary from 3.6 (water) to 10 (methane). 
Hence, for 
  - increasing pressure we observe an increase in speed of sound 
  - decreasing pressure we observe an decrease in speed of sound 

This

c
c

β

 will lead to a change of the shape of the waveform of the wavefield.



Nonlinear Propagation

Propagation history of an intense acoustic waveform that is sinusoidal at the source. 
(a) x = 0:   source waveform,   (b) distortion becoming noticeable,    
(c) x = xs:   shock formation,  (d) x = (π/2) xs maximum shock amplitude, 
(e) x = 3 xs full sawtooth shape,  (f) decaying sawtooth,  
(g) shock beginning to disperse, (h) old age. 

(After J. A. Shooter et al., Acoustic saturation of spherical waves in water, J. Acous. Soc. Amer., 55:54–62, 1974)

Display 
oscilloscope



Linear and Nonlinear Propagation

The nonlinear propagation leads to a steepening of the wave form. In the 
frequency domain this corresponds to the formation of higher harmonic 
components.
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Linear and Nonlinear Propagation

The nonlinear propagation leads to a steepening of the wave form. In the 
frequency domain this corresponds to the formation of higher harmonic 
components.

46



Nonlinear Wave Equation

47

[ ]
[ ]

0 0 0

0 0 0

( ) 1 ( ) ,

( ) 1 (1 2 )( )

0, 0,t t

p p p

p p p

v D p p D v

ρ ρ κ

κ κ κ β

ρ κ

= + −

= + − −

∇ + = ∇ + =

Combination of the second order approximations 
                          
                         

with Hooke's law  and Newtons law 

leads t
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o the following set of equations
             

      

Combining the above set of equations and neglecting terms of 
third order and higher yields the

2 2 2 2
2 4
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1
t tp p p

c c
β
ρ

∇ − ∂ = − ∂

 second-order nonlinear wave equation
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Various methods exist to model nonlinear propagation. If the nonlinearity 
is weak, the additional term may be considered as a contrast source. Next, 
a solution for the Westervelt equation, which equal

2 2 2 2
2

0 0

4
0 0

1( ) ( ) ( ) ( ),

( ) ( ) ( ')

prime
t t

inc

P r P r S r P r
c c
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β
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∇ − ∂ = − − ∂

= − −

s

                         

may be obtained by recasting the differential equation into an integral 
equation, viz.

                   ( )2 ( ) ( ) .
r D

P r P r dVωω
∈

∗∫

If the nonlinearity is weak, a Neumann scheme is sufficient to solve the integral 
equation. Note that with each iteration step, one additional harmonic is formed.
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Cardiac Imaging is a well known 
application for harmonic imaging, 
as the harmonic components are 
formed behind the ribs:
- no reflections from the ribs;
- a narrow beam profile.



Harmonic Imaging

The nonlinear propagation can be used to suppress side lobes which are 
mainly present in fundamental beam.

50

1 MHz 3 MHz2 MHz



Hyperthermia with High Intensity Focussed Ultrasound

• HIFU
• Hyperthermia  T = ± 45 oC
• Ablation  T >    60 oC

• Porcine liver

51

Tissue Ablation Accelerated by Peripheral Scanning Mode with High-Intensity Focused Ultrasound: A Study on Isolated Porcine 
Liver Perfusion Bu, Rui et al. Ultrasound in Medicine and Biology , Volume 39 , Issue 8 , 1410 - 1419



Hyperthermia with High Intensity Focussed Ultrasound

• One may also use ultrasound to measure the temperature

52

K.W.A. van Dongen and M.D. Verweij, “A feasibility study for non-invasive 
thermometry using non-linear ultrasound” Int. J. Hyperthermia (2011)



Cavitation

Cavitation refers to the phenomenon of the appearance of holes in liquid. 
This appearance is due to the stress of tensile forces of some kind. These 
forces may, in turn, be due to high speed flow, the rapid motion of a solid 
(propeller blade under water), or to high intensity ultrasound.

53

www.veempropellers.com
www.britannica.com

http://www.veempropellers.com/wp-content/uploads/caviation.jpg


?

• https://youtu.be/ArpclLD4yP8?feature=shared

54



Acoustic Radiation Force / Acoustic Streaming

• First observed by Faraday in air in 1831.
• Acoustic radiation force is the result of the interaction of the acoustic 

wave with the medium itself. It follows from conservation of energy 
and momentum, and only takes place in lossy media.

55

https://youtu.be/ArpclLD4yP8?feature=shared

𝐹⃗𝐹 = 2α𝐼𝐼
𝑐𝑐𝑝𝑝

, 𝐼𝐼 = 𝑝𝑝𝑣⃗𝑣
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