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Wave equation
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Christiaan Huygens

14 April 1629 (The Hague)
8 July 1695 (The Hague)

Augustin Jean Fresnel

10 May 1788 (Broglie)
14 July 1827 (Ville-d'Avray)

Gustav Robert Kirchhoff

12 March 1824 
         (Koningsbergen)
17 Oct. 1887 (Berlin)

George Green

14 July 1793 (Sneinton)
31 May 1841 (Sneinton)

[1] http://nl.wikipedia.org/wiki/Christiaan_Huygens
[2] http://nl.wikipedia.org/wiki/Augustin_Jean_Fresnel
[3] http://www.nottingham.ac.uk/physics/about/history/george-green.aspx
[4] http://nl.wikipedia.org/wiki/Gustav_Robert_Kirchhoff



(Huygens – Fresnel) – Green – Kirchhoff – Rayleigh

• Wave-fields can be calculated as a function of space and time, from known 
values along a (closed) boundary.

• The oldest formulation of this process is Huygens' Principle.  Later, Fresnel 
gave a more mathematical, but still somewhat heuristic description of wave-
field extrapolation.

• Mathematically exact extrapolation of wave-fields is accomplished with the 
help of the Kirchhoff and Rayleigh integrals, which are based on Green's 
Theorem.

• The extrapolation algorithm is based on the wave equation and the causality 
of wave propagation.

• Wave-fields can be extrapolated forward and backward in time and space.
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Green’s Theorem
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Kirchhoff Integral
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Kirchhoff Integral
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Kirchhoff Integral
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Rayleigh Integral
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Rayleigh Integral
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Rayleigh Integral
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Rayleigh II Integral
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Rayleigh II Integral
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Rayleigh I Integral
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Exercise
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Exercise (cont’d)

78

( ) ( ) ( )

2 2

2 2 2 2

3
0

, cos , sin

, ,

1ˆˆ 0,0, ,

Switch to cylindrical coordinates:  

                                                        

    

A A B B

cA A B
A A

B A

i r r

x y x y

dxdy d d r z r z

i r c
p z z W e d

r r
ω

ρ ρ ϕ ρ ϕ

ρ ϕ ρ ρ ρ

ω
ω ω ρ ρ

∞
− ∆ +∆

= + = =

= ∆ = + ∆ = +

+ ∆
=

∆ ∆∫

( )
( )

( )

( )
( )

( )

( )
( )

0

0

ˆ

ˆ

ˆ

               

                   

                    

cA B

A

A A B

cA B

A

A A B

cA B

A B

i r r

i r r

i z z

e
z W d

r r r

e
z W

r r r

e
W

z z

ρ

ρ

ω

ω

ω

ω ρ
ρ

ω

ω

∞

=∞

=

− ∆ +∆

− ∆ +∆

− +

∂
= −

∂ ∆ ∆ + ∆

= −
∆ ∆ + ∆

=
+

 
 
 

 
 
 

∫

B     (0, 0, zB)

A     (0, 0, zA)

∆rA

∆rB

z



Rayleigh II Integral as Spatial Convolution
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Helmholtz Equation in the (kx,ky)-domain
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Helmholtz Equation in the (kx,ky)-domain
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Evanescent Field
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Evanescent Field
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• Reconstruction of the velocity profile of a damaged IVUS transducer.
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Two Media - Boundary Conditions
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Contiunuity of pressures results in:
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Heterogeneous Media

• Incident, scattered and total field
• Forward and inverse problem
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Heterogeneous Media – Integral Equation
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Heterogeneous Media – Integral Equation
• Forward problem: sources and contrast are known, 
   total/actual field is unknown
   => linear problem

• Inverse problem: sources are known, 
   total/actual field is known at the boundary, 
   contrast and field in ROI is unknown.
   => non-linear problem

• Green’s function is defined for the background medium,
     however there is a freedom to choose it heterogeneous or homogeneous.

• Obvious choice is  to choose a background for which we have an analytical 
expression of the Green’s function (or the incident field).

• For smooth varying media one could apply the WKBJ approximation
• Green’s function is singular at |r|=0.
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WKBJ = Wentzel – Kramers – Brillouin – Jeffreys



Born Approximation
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Born approximation.



Neumann Series
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•

•

 For strong contrasts, the iterative scheme may not converge to the true solution resulting
in a need for more advanced iterative solution methods such as conjugate gradient methods.

 For a limited number of configurations, an analytical solution exits.



Solution methods
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Exact Solutions – Spherical Contrast
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A plane wave scattering at a acoustical penetrable sphere in an homogeneous 
background medium maybe modelled using an integral equation formulation. 
There also exists an exact solution for this problem.



Exact Solutions – Spherical Contrast
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By applying a Fourier transformation, time domain results are obtained.



Exact Solutions – Spherical Contrast
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Comparison of the obtained results shows that the integral equation formulation is 
rather accurate.



Finite Difference Time Domain (FDTD) 

FDTD or Yee’s method uses the time-domain field equations as a starting 
point. It has been first described by Courant, Friedrichs, and Lewy (CFL) 
in 1928. In 1966, Yee described the application of FDTD for solving 
Maxwell’s curl equations using staggered grids in space and time.

The method uses finite difference rules to discretize the field equations; 
e.g.

After discretising the equations and spatial domain, the starting 
conditions for the wave fields are defined. Finally, the four field quantities 
are solved in a leapfrog manner.

108
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Finite Difference Time Domain (FDTD) 

Pros
• It is intuitive, easy to understand and implement.
• FDTD is a time-domain technique and the response of the system over 

a wide range of frequencies can be obtained with a single simulation.

Cons
• Since FDTD requires the entire computational domain to be gridded 

and discretization must be sufficiently fine to resolve both the smallest 
wavelength and the smallest geometrical feature in the model. Also 
the time steps must be very small. This may lead to memory 
problems.

• Care must be taken to minimize errors introduced by boundaries (PML 
and ABC’s). 
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