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Wave equation
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Christiaan Huygens

14 April 1629 (The Hague)
8 July 1695 (The Hague)

Augustin Jean Fresnel

10 May 1788 (Broglie)
14 July 1827 (Ville-d'Avray)

Gustav Robert Kirchhoff

12 March 1824 
         (Koningsbergen)
17 Oct. 1887 (Berlin)

George Green

14 July 1793 (Sneinton)
31 May 1841 (Sneinton)

[1] http://nl.wikipedia.org/wiki/Christiaan_Huygens
[2] http://nl.wikipedia.org/wiki/Augustin_Jean_Fresnel
[3] http://www.nottingham.ac.uk/physics/about/history/george-green.aspx
[4] http://nl.wikipedia.org/wiki/Gustav_Robert_Kirchhoff



(Huygens – Fresnel) – Green – Kirchhoff – Rayleigh

• Wave-fields can be calculated as a function of space and time, from known 
values along a (closed) boundary.

• The oldest formulation of this process is Huygens' Principle.  Later, Fresnel 
gave a more mathematical, but still somewhat heuristic description of wave-
field extrapolation.

• Mathematically exact extrapolation of wave-fields is accomplished with the 
help of the Kirchhoff and Rayleigh integrals, which are based on Green's 
Theorem.

• The extrapolation algorithm is based on the wave equation and the causality 
of wave propagation.

• Wave-fields can be extrapolated forward and backward in time and space.
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Green’s Theorem
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Kirchhoff Integral
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Kirchhoff Integral
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Kirchhoff Integral
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Rayleigh Integral
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Rayleigh Integral
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Rayleigh Integral
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Rayleigh II Integral
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Rayleigh II Integral
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Rayleigh I Integral
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Exercise
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Exercise (cont’d)
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Rayleigh II Integral as Spatial Convolution
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Helmholtz Equation in the (kx,ky)-domain

80

( )

( ) ( ) ( )

( )

2

, , ;ˆ

, ; ; , , ;ˆ

,

ˆ ˆ2 2

We define the double spatial Fourier transform of  :   

So, double Fourier transformation of the Helmholtz equation to the -domain:

x y
x y

x y

i k x k y

p x y z

p k k z e p x y z dxdy

k k

p p
x

ω

ω ω
∞ ∞

−∞ −∞

+
≡

∂ ∂
+

∂ ∂

∫ ∫



( )

2 2
2 2

2 2 2 2 2

2 2 2 2
2

ˆ 0 0ˆ

0 .

2 2

2

with  ,  we get:   

x y

z x y z

p pp k k p
y z c z c

pk c k k k p
z

ω ω

ω

 ∂ ∂
+ + = ⇒ + − − = ∂ ∂  

∂
≡ − − + =

∂



















Helmholtz Equation in the (kx,ky)-domain

81

( )

( )

0

2
2 2 2

2 2

, , ;

0
2

Let us consider a wave field   , generated by sources below the    plane.

Then the source-free Helmholtz equation:

                    with:      

is valid

x y

z z x y

p k k z z z

p k p k k k
z c

ω

ω

=

∂
+ = = − +

∂













( ) ( )

0

0

0 0, , ; , , ;     

 for all   .
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Evanescent Field
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This technique can be used to compute the velocity profile of an ultrasound transducer.
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• Reconstruction of the velocity profile of a damaged IVUS transducer.
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Two Media - Boundary Conditions

87

c1    c2

s1

s’1
s2

y

x

1
1 1 1

( , )
ˆ: ( , ) ( )

Consider a plane wave traveling in the -plane 
in the direction , with velocity 

If the field meets a boundary between two media 
with different speed of sound,
part of the 

i s r

x y
s c p r F e ωω ω − ⋅=

1

2

'
1

2

1 1

ˆ ' ( , ) ( ) ,
ˆ ( , ) ( ) .

0

ˆ ˆ ˆ'

field will be reflected:     
and part of field will be refracted:    

At , the following boundary conditions apply:

1) continuity of pressure: 

i s r

i s r

p r F e
p r F e

y

p p

ω

ω

ω ω

ω ω

− ⋅

− ⋅

=

=

=

+ = 2

1 1 2

;

2) ' . continuity of normal component of the particle velocity: 

p

v v v⊥ ⊥ ⊥+ =



Reflection and Refraction at a Plane Interface
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Reflection and Refraction at a Plane Interface
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At the interface, at , application of the boundary conditions yield
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Contiunuity of pressures results in:
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can only be fulfilled if:      

which determines the reflection angle  and which gives us
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Heterogeneous Media

• Incident, scattered and total field
• Forward and inverse problem
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Heterogeneous Media – Integral Equation
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Hence, the field generated by the primary sources  may be obtained 
by spatially convolving them with Green's function, hence
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Based on the principle of superposition, one could argue that each contrast 
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the following integral equation (Fredh
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Heterogeneous Media – Integral Equation
• Forward problem: sources and contrast are known, 
   total/actual field is unknown
   => linear problem

• Inverse problem: sources are known, 
   total/actual field is known at the boundary, 
   contrast and field in ROI is unknown.
   => non-linear problem

• Green’s function is defined for the background medium,
     however there is a freedom to choose it heterogeneous or homogeneous.

• Obvious choice is  to choose a background for which we have an analytical 
expression of the Green’s function (or the incident field).

• For smooth varying media one could apply the WKBJ approximation
• Green’s function is singular at |r|=0.
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WKBJ = Wentzel – Kramers – Brillouin – Jeffreys



Born Approximation
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Born approximation.



Neumann Series
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•

•

 For strong contrasts, the iterative scheme may not converge to the true solution resulting
in a need for more advanced iterative solution methods such as conjugate gradient methods.

 For a limited number of configurations, an analytical solution exits.



Solution methods
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can be solved very efficiently, when it treated as a vector-matrix problem, i.e.
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with f  the known incident field, u  the unknown total field,
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Exact Solutions – Spherical Contrast
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A plane wave scattering at a acoustical penetrable sphere in an homogeneous 
background medium maybe modelled using an integral equation formulation. 
There also exists an exact solution for this problem.



Exact Solutions – Spherical Contrast
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By applying a Fourier transformation, time domain results are obtained.



Exact Solutions – Spherical Contrast
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Comparison of the obtained results shows that the integral equation formulation is 
rather accurate.



Finite Difference Time Domain (FDTD) 

FDTD or Yee’s method uses the time-domain field equations as a starting 
point. It has been first described by Courant, Friedrichs, and Lewy (CFL) 
in 1928. In 1966, Yee described the application of FDTD for solving 
Maxwell’s curl equations using staggered grids in space and time.

The method uses finite difference rules to discretize the field equations; 
e.g.

After discretising the equations and spatial domain, the starting 
conditions for the wave fields are defined. Finally, the four field quantities 
are solved in a leapfrog manner.
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Finite Difference Time Domain (FDTD) 

Pros
• It is intuitive, easy to understand and implement.
• FDTD is a time-domain technique and the response of the system over 

a wide range of frequencies can be obtained with a single simulation.

Cons
• Since FDTD requires the entire computational domain to be gridded 

and discretization must be sufficiently fine to resolve both the smallest 
wavelength and the smallest geometrical feature in the model. Also 
the time steps must be very small. This may lead to memory 
problems.

• Care must be taken to minimize errors introduced by boundaries (PML 
and ABC’s). 
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