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Computer Optimization of Transducer
Transfer Functions Using Constraints
on Bandwidth, Ripple, and Loss

Theodore L. Rhyne, Member, IEEE

Abstract—Transducers, having one piezoelectric layer near its
half-wave resonance and N quarter-wave layers, are designed
using computer optimization to adjust the thicknesses and im-
pedances of the various layers so as to fit the resulting transfer
function to a target function. An augmented Mason model is used
to evaluate the transducer. Optimization of fit is by a steepest
descent algorithm. Essentially error-free fits are achieved for
target functions that match the underlying dynamics. By applying
classical filter theory to a lumped-element transducer model, the
transducers dynamics are identified as all-pole filters, which are
characterized by polynomials of order V to N+ 1. The design
methodology is tested by designing a series of low-loss transducers
that explore fractional bandwidths from 45 to 116%. From these
studies there appears to be constraints on the minimum () of the
poles, and other properties. Typical power transfer efficiencies
of —1 dB are achieved by impedance scale matching. Using a
second-order Fano bound, it is shown that the matching layers
function as an optimal compensation network for low-loss flat
bandpass transducers. Finally, by the inclusion of loss, lower @)
poles are demonstrated with a Bessel transducer.

1. INTRODUCTION

HE fundamental model of a piezoelectric layer transducer

is that of Mason [1], wherein a piezoelectric layer is poled
through the thickness of the layer and electrical terminals are
attached as thin conductive layers on both faces. The layer may
be acoustically loaded on either or both of the two faces. There
are several well-known models that are interpretations of the
fundamental Mason model including: Redwood [2], KLM [3],
and the lumped-element model [4].

An important class of transducer consists of a piezoelectric
layer operating near its half-wave resonance, which is loaded
on one face to a water-like acoustic media with interposed
nearly quarter-wave matching layers and on the other face to
a backing material. The matching layers act as a filter and
provide an impedance transformation between the water-like
media and the piezoelectric layer. These methods have been
well studied in the realm of microwave and radio frequency
engineering [5], [6].

Many methods for the design of transducer transfer func-
tions have been advanced which specify the choice of im-
pedances and thicknesses for the layers using analytical ap-
proximations. The most fundamental designs treat single and
double matching layers together with a low-loss backing, as
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in the work of Kossoff [7]. The impedance choices presented
by DeSilets ez al. were a significant advance [§8]. Inoue et al.
and Goll er al., among others, have approached the design of
transducers with three and more matching layers [9]-[11].

The application of computer optimization to transducer
design offers the opportunity to manage the complexity of de-
signing resonant layers and construction layers (e.g., bonding,
metallization, etc.). Selfridge ez al. {12] and later Lockwood
and Foster [13] optimized a “badness” function of the impulse
response. Alternatively, Van Crombruge and Thompson used
nonlinear goal programming to optimize the transfer function
of a transducer [14]. These methods demonstrate the capability
of algorithms to handle the complexity of realistic designs
while satisfying optimizing criteria. However, the underlying
resonances of the transducer impose constraints on the uni-
verse of possible transfer functions. An approach is sought
that combines computer optimization with insights into the
limitations imposed by the transducer resonances.

The objective of this paper is to determine a methodology
for computer design of transducer transfer functions and their
impulse responses. The transducer and its parameters are
defined using a modified Mason model plus a model for the
acoustic layers. The transducer optimization is defined using
a “target” transfer function and an error function, which is
minimized by standard methods. By applying classical filter
theory to the lumped-element model, it is determined that
the transducer transfer function has an all-pole characteristic.
A computer design process is defined using all-pole target
functions. The design methodology is used to explore a series
of low-loss two-matching-layer designs and achieve virtually
error-free optimization of the polynomial target functions. The
underlying constraints on the characteristic poles for low-loss
designs are explored by examining the series of progressively
wider bandwidth designs using certain classic polynomial
filters (Butterworth, Bessel, Chebyshev, etc.). It is noted that
with proper impedance scaling and low loss, the power transfer
function may be made extremely efficient over significant
bandwidths. A second-order Fano performance bound, relat-
ing bandwidths and reflection coefficients, is applied to the
matching layers as a compensating filter. It is found that
the performance of series of transducers generally approaches
the bound. In a rigorous test, a fifth-order lossless transducer
demonstrates excellent agreement with the bound. This proves
the optimality of the multilayer compensation for flat transfer
functions. Finally, by including loss it is demonstrated that

0885-3010/96$05.00 © 1996 IEEE
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Fig. 1. Physical construction of the transducer having one piezoelectric layer
that is electrically layered at its faces and multiple “front” and “back” layers
ending in half spaces.

lower @ (all-pole) transfer functions may be achieved, with
the example of a fourth-order Bessel.

II. TRANSFER FUNCTION CALCULATION

The class of transducer considered is shown in Fig. I,
with a piezoelectric layer acoustically coupled on its “front”
and “back” faces to multiple acoustic layers ending in half
spaces, and electrically coupled to a terminal pair formed by
conductive layers on the piezoelectric layer. The transducer is
electrically excited through the terminal pair, radiates waves
from the front acoustic structure, receives acoustic waves at
the front, and observes the waves in an electrical network
connected to the electrical terminals.

The operation of the transducer is analyzed using equivalent
electromechanical circuit models for the transducer and the
electrical network. The fundamental model for a piezoelectric
layer transducer is the modified Mason model given in
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where
Py, Fy  force on the faces (N);
Uy,Uy  velocity of faces (m/s);
Z time shift operator exp(j7);
w radian frequency (rad/s);
T transit time across the layer = /v (s);
R, specific acoustic impedance of the layer (Rayl);
A area of the layer (m?);
e dielectric constant at fixed strain (F/m);

l thickness of the layer (m);
h piezoelectric constant (N/C);
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VP velocity at constant displacement (m/s);

Co capacitance at constant strain = ¢° A/l (F);

kr piezoelectric coupling constant (transversely
clamped);

V.1 electrical voltage and current (V, A);

7 the unit imaginary number;

o one-way loss (which may be a function of fre-
quency) (Np):

Ry dielectric loss resistance, which may be a function

of frequency (£2).

The piezoelectric layer possesses two mechanical ports
and one electrical port. The front and back faces of the
piezoelectric layer are fully described by the mechanical
terminal variables of velocity and force, U and F, while the
electrical terminals are fully described by the voltage and
current, V' and /. The upper left square in the matrix can
be interpreted as a lossy acoustic transmission line, the lower
right entry represents the series reactance of a capacitance
plus a dielectric loss resistance, Ry. Piezoelectric coupling is
expressed by the piezoelectric constant, &, in the cross terms.
The form of (1) is modified from the Mason model of [4]
with the addition of loss to the acoustic transmission line and
dielectric loss to the static capacitance.

The Mason model may be readily interconnected with
acoustic and electrical loads to complete the transducer model.
The transducer is constrained to have multiple layers with
the same outside dimensions, which load both faces of the
piezoelectric layer, as shown in Fig. 1. The nth layer is
characterized using the expression
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where
Zn time shift operator e/™;
T, one-way transit time for the nth layer (s);
R, specific acoustic impedance for the nth layer
(Rayl);
Fin,Fs, force variables for the nth layer (N);
Ui, Usyp  velocity variables for the nth layer (m/s);

Qo one-way loss for the layer, which may be a

function of frequency (Np).

The expression involves specific acoustic impedance, Ry,
one-way loss, a,,, and the one-way transit time, 7,,. The layers
connected to the front face represent matching layers, bond
lines, metal layers, and terminate in a radiation impedance,
Rw. Layers connected to the back face represent similar
layers that terminate in a backing impedance, Rp. The overall
electromechanical model is given in Fig. 2, with multiple two-
port networks characterized by (2) connected to the front
and back mechanical ports. Similarly, electrical components
terminating in a transmitting source may be connected to the
electrical terminals.
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Fig. 2. Overall electromechanical model of a transducer plus electrical
components terminating in a transmitting source, and mechanical layers at
the front and back faces terminating in resistances. Radiation is caused by
voltage Vr generating force iy, while reception is voltage Vi caused by
wave force Fgr.

The one-way transmission transfer function will be consid-
ered as the radiated force over the transmitter voltage as given
in

, Fw (jw)
Hr(jw) = ———. (3)
(e Vr(jw)
Similarly, the one-way reception transfer function is the re-
ceived voltage divided by the open-circuit wave force, Fg,
as in
, Vr(jw)
Hp(jw) = =———. Sy
Ge) Fr(jw)
Since the transducer is a linear passive reciprocal device, the
two transfer functions are identical functions of frequency with
the exception of a scaling constant. The transfer functions may
be readily evaluated by solving the network given in Fig. 2
using well-known network analysis methods (e.g., ABCD
matrices).

III. TRANSFER FUNCTION DESIGN
USING COMPUTER OPTIMIZATION

The transfer function of (3) is determined by the various
physical parameters of the acoustic and electrical networks
(e.g., layer impedance, thickness, ctc.). These physical param-
eters can be formulated as the components of a parameter
vector, P. The approach is to seek P so that a desired target
function, 7'(jw), is achieved within some error. The error
measure between Hp(jwn) and the target function 7'(jwy,)
is defined to be
N-1 .
> [2010g [Hr (jwn, P)| — 201og |T(jwa)l|  (5)

n=0

1
E=%
where the error, F/| is the average absolute difference between
the transfer and target functions evaluated in decibels, summed
over N points in frequency. If the error is made sufficiently
small (over a significant bandwidth), then the target function
is said to have been achieved.
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There are numerous methods of computer minimization of
(5) subject to a target function, 7'(jw), achieved by manip-
ulating the elements of parameter vector, P. A conventional
steepest descent method was used here involving numerical
evaluation of the gradient of £ with respect to ﬁ, and moving
in the opposite direction of the gradient by an adjustable step
factor [17]. The essential element of the design process is
the selection of the target function, 7'(jw). It was determined
that essentially error free optimizations are achieved when the
selected target function matches the underlying characteristic
resonances of the transducer.

1V. USING FILTER THEORY TO SELECT
SUITABLE TARGET FUNCTIONS

The transducer’s underlying transfer function can be esti-
mated using an approach which views the transducer as an
insertion-loss filter. The reactive elements of the electrical
network, the piezoelectric layer, and the acoustic layers are
“inserted” as low-loss or zero-loss reactive elements between
an electrical generator with a Thevenin impedance, Ry, and
a radiation load with an impedance, Iy . The problem is
somewhat complicated by the addition of a third port, to which
the backing acoustic network, including the backing load, is
connected. However, if there is low loss at this port, the
filter theory concepts of energy transmission, filtering by the
reactive elements, and reciprocity may be applied. The model
used is equivalent to the Mason model using certain lumped-
elements connected in a configuration shown in Fig. 3(a), and
is equivalent to [4] (plus the addition of the loss elements
noted above).

The lumped-element model of Fig. 3(a) can be used to con-
struct a resistor-inductor-capacitor (RLC) filter model given
in Fig. 3(b), using the relationships included in the figure.
As a first-order model, the transducer can be viewed as a
simple bandpass filter, having one series resonator and pi
networks, which is valid over some bandwidth centered near
the half-wave resonance of the piezoelectric layer.

The transducer configuration of interest contains matching
layers making up the front network, and a backing loss with
low impedance. The two matching layers are approximated by
lumped LC networks using a pair of pi networks in cascade.
Combining this with the previous model, a complete lumped-
element insertion-loss model is constructed in Fig. 4. From
filter theory, the transfer function is seen to have an all-pole
form centered on the passband, since this is a ladder structure
with no series resonators shunting the ladder nor any parallel
resonators in series along the ladder. The series resonator of
the piezoelectric layer and the pi networks, representing the
matching layers, each add a resonance. In general, if there are
N matching layers then there should be as many as N + 1
poles in the transter function.

The number of poles in the transfer function can be studied
numerically by evaluating (3) using the Mason model transfer
function for a transducer with the piezoelectric series resonator
and the two matching layers all set to the same (free) resonance
frequency. The Mason model analysis of the transfer function
is given in Fig. 5, for three widely differing loads. The plot
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Fig. 3.
model valid near the half-wave resonance of the piezoelectric layer.

Lumped-element model of the transducer: (a) the exact lumped-element model equivalent to the Mason model and (b) the narrow-band approximate
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Fig. 4. Lumped-element model extended to provide a pair of pi networks representing two matching layers connecting the front port to the acoustic load.

for the 1.5 MRayl (Rw = A 1.5 MRayl) load shows a
bandpass transfer function with a moderate bandwidth. The
three resonators become coupled so that they exhibit three
widely spaced poles with a broad bandpass. For the plot with
a light load of 400 Rayl (R = A 400 Rayl) three poles are
clearly seen in the transfer function. However, for the high
load of 30 MRayl (Rw = A 30 MRayl) there appear to be
only two poles.

The pole configurations for the various acoustic loads can
be explained by evaluating the reflection coefficient, ps, and
using a well-known relationship for insertion-loss filters [18],

where the magnitude of the transfer function is determined
from the terminal impedance of the acoustic port, Ziy, and its
load, Rw as in

2

Rw — Zin
OW 7 L) )

RW + Zin

\Hr(jw)2 =1 |paf? =1 — |

The properties of Z;,, for the acoustic port, have been
studied above by altering the load, Ryy. For values of Ry
approaching zero the characteristic resonances of the network
are dominated by the zeros of Z;,. Conversely, for Rw
approaching infinity, the resonances are dominated by the
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Fig. 5. Mason model transfer function evaluation for a two-matching-layer transducer with three acoustic loads consisting of tissue-like plus very light

and very heavy loads. Both two- and three-pole resonances are seen.

poles of Zi,. For a lumped-element filter the numerator and
denominator of Z;, may differ by only one order. The root
locus of the poles making up the dynamics moves in such
a manner that there are three poles seen with the light load
and two poles seen with the higher load. At either extreme
of the value of Ry there is light damping, and thus the high
@ poles seen in the figure, while near the 1.5 MRayl loading
there is greater loading and lower (). This result supports the
conclusion that we may have either N or V + 1 poles near
the band-center frequency of these filters. Consequently, the
appropriate target functions used in optimization are all-pole
with polynomials having N or N + 1 poles.

V. DESIGN METHODOLOGY FOR TRANSDUCERS

A method for the design of the transducer transfer function
and transient response can now be defined. Transducers with
N matching layers are considered, which function as an N
or N + 1 pole insertion-loss filter, having low-loss reactive
components. Next, the target transfer function, T'(jw), is
selected to be all-pole (within the band), using a polynomial
of the order N or N + 1, which is centered on the desired
frequency, as in

. k

TV = Xl
where k is a scale factor, X is the desired polynomial, and wp
is the radian band-center frequency. Finally, the optimization
algorithm adjusts the parameters of the transducer, P , SO as to
match the poles of the given polynomial target function. The
optimization uses the Mason model analysis of the transducer.

This design method is numerically demonstrated by the de-
sign of prototype transducers with bandpass transfer functions
of second and third order, which require two matching layers.
The basic transducer is shown schematically in Fig. 6, with
a transmitter source having impedance Ry, a radiation load

TABLE 1
VALUES FOR PIEZOELECTRIC LLAYER

Parameter Value Dimensions

F, ”2—% Hz

! & Hz

R, 32 108 Rayl
kr 0.66

€ 97 10°° F/m

A 1.43 107° m?

P 4118 m/s

o 11.908 10752x f Np
Ro 80/(Co2x5 10%) Q

of impedance [y, and an air backing of impedance Rp.
Each of the elements of the design is summarized in the
figure. The piezoelectric material chosen, with values given
in Table I, is characteristic of PZT material (having coupling
factor kr compatible with small beam-shaped elements as
in a phased array). The piezoelectric and matching layers
have relatively low loss, represented by values for the various
«’s in the figure. The transmitter source, I, is arbitrarily
chosen to be 50 €, while the radiation load, Ry, is chosen
to be approximately that of tissue (1.54 MRayl). For reasons
of power transfer efficiency, the layer area of the layers
and piezoelectric, A, is chosen to achieve a nominal 50 2
impedance scale for the input impedance at the electrical
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Fig. 6. Basic configuration of the series of transducers studied with one
piezoelectric and two matching layers which is loaded into tissue-like media
and backed by air.

terminals. The parameters for the nth matching layer are
indicated in the figure with frequency, F,,, being the (free)
quarter-wave resonance. The half-wave resonance, F,, is used
to characterize the piezoelectric thickness.

For convenience in displaying and interpreting the results,
the transfer function Hr(jw) is replaced by the loop response
given as

L(jw) = Hp(jw)2HR(jw). (7)
This loop transfer is defined as the product of the transmission
and reception transfer functions multiplied by a factor of
two. The factor of two is associated with Hp and repre-
sents a Thevenin open circuit force of 2Fr for the received
wave (analogous to the voltage doubling at an open-circuit
transmission line), which makes the available energy of the
received wave equal to the energy in the radiated wave [4].
Conceptually, the loop response in (7) represents the received
signal at R due to excitation by the transmitter voltage Vi
with a perfect radiation transfer. The loop transfer achieves a
theoretical optimum of —6 dB. Transfer efficiency for one-way
is easily computed using

dB(|L(jw)[) — 6
5 .

For the target function, nine uniformly spaced target points
were employed, which appears to have adequately covered
the band between the —3 dB points of Hr(jw). The pa-
rameter vector, f-;7 was chosen as a five-dimensional (5-D)
vector involving the piezoelectric layer thickness plus the
impedance and thickness of each of the two matching layers.
The algorithm minimized the error value in this 5-D parameter
space. The fractional bandwidth is calculated from the —3 dB
(one-way transfer function) bandwidth and the band-center
frequency.

Sixteen transducer designs were studied using three different
polynomial shapes with differing bandwidths, as listed in Table
II. The polynomial shapes were selected to permit the study of
progressively wider bandwidths starting with the Bessel and
progressing to Butterworth and Chebyshev in Figs. 7, 8, and 9,
respectively. Table II provides full prototype details with layer
thicknesses reported using the quarter-wave free resonances
and acoustic impedances of the matching layers. The thickness
of the PZT layer is given as the half-wave resonances, F),.
Also, Table II lists the resulting average error of the fit to the
target function.

dB(|H,(jw)) = ®)
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The Bessel transfer, seen in Fig. 7, covers fractional band-
widths from 45 to 70% in increments of 5%. The error of
the approximation is extremely small for the cases from 50 to
65% and rises for the 70% case, suggesting that the polynomial
cannot be approximated by the transducer poles at the higher
design bandwidths. For the 45% case, the error of fit is good,
however, the outer window impedance has been optimized
to nearly that of the acoustical load. This is a second-order
Bessel, which is an NV = 2 case. It appears that fractional
bandwidths above 45% are best fitted by N + 1 = 3 poles.
For the 70% case, the shape of the transfer function appears
to have higher bandwidth than the target function at the band
edges, suggesting that the @ of the two outside poles is higher
than that of the poles of the polynomial. The loop transfer
functions, with bandwidths above 50%, achieve peak transfer
functions of approximately —7.4 dB, which indicates a one-
way power transfer efficiency of —0.7 dB. The two cases at
45 and 50% demonstrate a lower transfer efficiency as the
dynamic transitions to the N = 2 case.

For bandwidths from 60 to 80%, the Butterworth transfer is
given in Fig. 8. The error of fit is best for the cases covering
the bandwidths from 65 to 75%, with excellent flatness in
the 70% transfer function. The errors of the 60 and 65%
cases show a peaking of the ()’s of the outside poles and
a saddle point at band-center, which suggests that the desired
third-order dynamic is no longer achievable. A second-order
Butterworth is evaluated at 60% bandwidth, and achieves good
error fit. The 80% case develops two inflection points on either
side of band-center, suggesting that the two outside poles are
again becoming higher ) than the Butterworth poles and that a
target function with higher ripple would fit better. All transfer
functions achieve peak transfer values of approximately —7.4
to —7.9 dB for a one-way power transfer efficiency of —0.7
to —0.95 dB at these peaks.

The Chebyshev pole locations converge to that of the
Butterworth as the ripple approaches zero. Consequently, it is
expected that the higher bandwidths will satisfy a Chebyshev
polynomial with finite ripple. The Chebyshev transfer, as seen
in Fig. 9, covers bandwidths from 75 to 90% in 5% steps,
and overlaps the bandwidths of the Butterworth for the 75 and
80% cases. The ripple of the target functions was adjusted at
each bandwidth in order to minimize the error of the computer
match. For the 75% bandwidth, with a ripple of 0.001 dB, the
result is essentially a Butterworth transfer function, as can
be seen in the figure. For bandwidths above 75%, excellent
error matches were achieved with progressively greater ripple
factors building to 1.1 dB (zero to peak ripple for the one-
way Chebyshev transfer) at a bandwidth of 90%. Excellent
error matches were achieved for all the cases. This suggests
that the Chebyshev polynomial, with its ripple parameter, can
match the inherent pole locations of the transducer over a very
wide range. The transfer functions achieve peak values ranging
from —8 to —8.3 dB, which correspond to power transfer
efficiencies of —1 to —1.15 dB.

Inspection of Table II shows that the impedances of both
matching layers increase with bandwidth for all polynomial
types. This indicates that progressively greater impedance
transformations of the acoustic load are required with pro-
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TABLE 1I
FILTER PARAMETERS FOR CASES STUDIED

Case Band Ripple Thickness Resonances Impedances Error “Front Load”
(%) (dB) (MHz).............. (MRayl)..... (dB) (M Rayl)
PZT Layer 1 Layer 2 Layer 1 Layer 2
Bessel 45 585 501 4.27 3.20 1.59 .044 6.24
Bessel 50 5.86  4.96 4.58 3.80 1.74 .029 7.34
Bessel 55 5.87 495 4.68 4.39 1.89 .029 8.31
Bessel 60 5.88 4.95 4.77 5.00 2.04 .033 9.25
Bessel 65 5.90 4.99 4.96 5.54 2.22 .053 9.59
Bessel 70 591 497 5.02 6.17 2.40 106 10.18
Btwrth* 60 5.90  4.88 4.73 5.05 1.79 .044 12.26
Btwrth 60 6.02 473 4.56 5.26 1.61 .109 16.44
Btwrth 65 597 479 4.88 6.05 1.86 .082 16.29
Btwrth 70 5.96 4.82 4.97 6.81 2.08 .029 16.51
Btwrth 75 5.95 4.84 5.04 7.63 2.32 .058 16.66
Btwrth 80 596  4.84 5.05 8.42 2.58 .207 16.40
Cheby 75 001 596 481 5.02 7.72 2.30 .031 17.35
Cheby 80 0.16 601 473 4.94 9.21 2.57 .026 19.78
Cheby 85 0.75 6.06 4.67 4.91 11.0 3.03 .020 20.30
Cheby 90 210 6.14 457 485 134 3.89 .046 18.27

* 2nd order

gressively higher bandwidths. Each of the three polynomials
appears to require different ratios of the inner and outer
window impedances. An interesting design parameter appears
to be the approximate transformed acoustic load impedance
presented to the piezoelectric (assuming the matching layers
were synchronously tuned), which is given by (Ro/R1)2Rw
and recorded in Table II as the “Front Load.” This trans-
formed load impedance consistently increases with increasing
bandwidth, except in the case of the third-order Butterworth
where it holds a constant value of approximately 16.5 MRayl.
The significance of backing loss can be judged by consider-
ing the series connection (Fig. 3) of the backing having an
impedance of 400 Rayl with the much higher transformed
acoustic impedances.

It is important to recall that the results in Figs. 7, 8,
and 9 represent computer optimized solutions of the Mason
model. The transfer functions in the figures indicate that
there is always a minimal loss for the transducers, even
with good matching of electrical impedance scales between
transducer and source impedance. The power transfer functions
for the two-matching-layer designs exhibit increasing loss

with increasing bandwidth from —0.7 dB to —1.15 dB. The
most important component of the loss arises from Cy, which
contributes a reactive component to the electrical impedance
mismatch. As can be seen in the data, the error from neglecting
Co may be considered acceptable for many designs. It is
interesting to note that if Cp is neglected, the transfer function
of the mechanical part of the transducer may be frequency
scaled by simply scaling the thickness dimensions of all the
mechanical components. Also, a component of the 10ss arises
from the finite mechanical quality and dielectric quality factors
of the piezoelectric, plus loss into the backing, which will be
considered in a later section.

VI. THE ACHIEVABLE BANDWIDTH
FOR LOW-LOSS TRANSDUCERS

The relationship of bandwidth to transmission efficiency
is of considerable interest. Bode [19] and then Fano [20]
provided relationships between power transfer efficiency and
bandwidth when compensating networks are used to match a
generator to an arbitrary fixed network. Normally, this method
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Loop transfer function and transient response for transducers approximating a Bessel polynomial transfer function (squared), with fractional bandwidths

from 45 to 70%. Higher bandwidths demonstrate increased edge pole (). and lower bandwidths reduce to second-order dynamics.

is used to add a lumped-element compensating network to the
electrical terminals of a transducer. However, it is possible
to apply Fano’s methods to the conventional matching layers.
With reference to Fig. 10, Fano’s compensating network is
associated with the matching layers, the radiation resistance,
Ry, is one load, and the piezoelectric layer and receiver
resistance, Ry, make up the fixed network that is being
compensated. With this we can evaluate the optimal bandwidth
and transmission of the transducer.

Fano’s bound applies to a purely reactive lumped-element
network between the two loads, consequently, the results
will only apply to low-loss transducers. The lumped-element
model of Fig. 3(b) is an excellent model within the bandpass
(and may be made arbitrarily exact over an extended band
by adding additional reactive elements). The lumped-element
model contributes three reactive components to Fig. 10: Cy
plus Ly, Cy of the series resonator from the piezoelectric layer.
In this interpretation the parallel resonators of Fig. 3(b) have
been ignored on the basis that they are high in impedance
compared to the matching network. Also, the electromechan-
ical transformer of Fig. 3(b) has been absorbed into various
factors of (Coh) or its square, as well as the 2: 1 transformer

into factors of two or four. Similarly, the matching network
is assumed to produce transformation factors of m or m?.
Finally, all loss is set to zero, which results in a shorted
backing port, 2, = 0, no dielectric loss, By = 0, and all
coefficients of absorption are «,, = 0.

The basis of the performance bound lies in the Taylor series
expansion of the natural log of the input reflection coefficient
p1, of Fig. 10. If the transfer function is a low pass that is flat
within its band, f., then p; = pmax is also a constant over
the band, f., and the Bode integral can be interpreted as the
bandwidth times the natural log of 1/|pwax|. The performance
bound for a single component, such as a shunting capacitor,
takes the familiar form

In —»dW:ZWf;ln——g—A L
/o lp1(Gw)] T omaxl 270 ReGy

€)

This first-order bound is most often quoted. However, the
transducer of Fig. 10 requires solving for three components,
making the solution much more complex. Fano showed that
given the three reactive components in the network of Fig. 10,
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Loop transfer function and transient response for transducers approximating a Butterworth polynomial transfer function (squared), with fractional

bandwidths from 60 to 80%. Higher bandwidths demonstrate increased edge pole (), and lower bandwidths reduce to second-order dynamics.

then three equations of the form

b 1
W ln ——— dw
/0 fﬂl(ﬂw)l

™ 2 ;
— (—1)’0 5 <A2k+1 — m Z /\:Zi(zk-H)) (10)

i

must be satisfied for £ = 0,1,2 where the A9z, are the
Taylor series coefficients for the natural log of the reflection
coefficient and the A,; are free variables.

The coefficients, Asrr1, are evaluated for the “load to
be matched” by considering the subfilter formed by termi-
nating the filter at the resistor, Rr, indicated in Fig. 10(a).
Unfortunately, Fano showed that there is no general third-
order solution. However, a second-order low-pass solution
does exist for the network of Fig. 10(b), which can be applied
to our problem by using a well-known bandshifting technique,
indicated in Fig. 10(c). In the bandshifting, C), is resonated at
the band-center frequency, wq, using the inductor L. Inductor
L, is resonated at the same frequency by Ci, as desired.
As remarked by Fano, it is well known that the bandshifting
transformation produces a bandpass transfer function whose

bandwidth is equal to the zero to cut off bandwidth of the low-
pass filter. The Appendix solves the second-order performance
bound for the low-pass filter of Fig. 10(b), which can then be
directly applied to the transducer of Fig. 10(c). The resulting
Fano bound is graphed in Fig. 11. The bound is plotted as
a family of curves showing the reflection coefficient as a
function of the normalized frequency variable

2nf 2r f
A=y an
CoRr
The curves are indexed on the parameter
—Ag° 1L (CoR2 1
S T e ik A (12)
(A5 4\ L, 3

The curves give the performance bound for bandwidth versus
reflection coefficient for a flat bandpass filter of the form of
Fig. 10(c).

VII. APPLYING FANO’S BOUND TO LOW-1.OSS TRANSDUCERS

As a test of this predicted performance bound and the ability
of multilayer (nearly) quarter-wave compensation filtering,
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a transducer with a fifth-order Chebyshev transfer function
centered on 5 MHz was designed, using four matching layers
and a resonating inductor. This all-pole filter function is nearly
the ideal flat bandpass function assumed in the analysis. The
resulting bandpass, seen in Fig. 12, is approximately 5.8 MHz
centered on 5 MHz for a fractional bandwidth of about 116%
(-6 dB two-way, 0.6 dB ripple, 19 points, peak error of
0.6 dB). The parameters of the various (lossless) transducer
components are given in Table IIL

The performance bound for this transducer (and several
others) is summarized in Table IV. In the table, the approx-
imate value of pmax and the observed bandwidth (—6 dB
loop) are given together with the A?° frequency scaling factor
and —A5°/(A$°)® parameter that identifies the curve. Note
that this test case achieves 97% of the optimal bandwidth,
which can also be seen in Fig. 11 while using the appropriate
frequency axis.

The performance bound of Fig. 11 can be applied approx-
imately to the series of transducers studied earlier. Using the
Mason model, the reflection coefficient, po, is given for three
of the transducers in Fig. 13. These transducers have some
loss (in the piezoelectric and in the air backing) such that

lp1(jw)] is only approximately equal to |p2(jw)|. To compare
the various transducers to the bound, Table IV lists the —6 dB
(two-way) bandwidths and the values of pmax, Which match
the areas of the curves in the figure, given the bandwidths.
Referring to Table TV and Fig. 11, the Butterworth 70% and
Chebyshev 90% are within 80% and 79% of the optimal
bandwidth, respectively. The Bessel 50% is much farther
from the bound at 56% of optimal. These are good general
agreements, which are probably affected by the nonideal shape
of the passbands plus added loss.

The higher order Chebyshev approaches the bound most
likely since its shape approaches a perfect filter. In the limit, an
infinite order Chebyshev would equal the bound. In principle,
the calculations in the Appendix can be repeated by inserting
a specific form for p;(w) into the integrals of (13) and (14)
and solving for a new set of curves as in Fig. 11. Note that
the carlier transducers are constructed without the resonating
inductor L;. From this study it is concluded that transducers
composed of multiple (nearly) quarter-wave layers can achieve
nearly optimal low-loss performance for flat transfer functions.
Moreover, it appears that this class of transducer prefers high
@ pole configurations when high bandwidth is desired.
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VIII. USE OF LOSS TO ACHIEVE
OTHER POLYNOMIAL CONFIGURATIONS

The previous sections provide numerical evidence that low-
loss transducers of the type studied prefer very high Q
poles. Other all-pole filters require polynomials with lower Q
poles. Previous work indicates that if higher loss materials
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TABLE III
Five-POLE CHEBYSHEV 116% COMPONENTS

Layer  Thickness Resonance Impedance
(MHz) (M Rayl)
PZT 5.87 32.11
Layer 1 4.50 26.73
Layer 2 4.92 11.38
Layer 3 4.94 4.60
Layer 4 5.18 2.24
TABLE IV

PREDICTED FANO BOUNDS FOR GIVEN TRANSDUCERS

Transducer  |pma] Bandwidth AP —AP/(AP)?  f,
(dB) (MHz) x108 (MHz)
Cheby. 116% -6 58 1.016 -0.037 5.98
Butterw. 70%  -11 3.5 1.001 -0.034 4.36
Cheby. 90%  -8.5 4.5 9709 -0.028 5.70
Bessel 50% -10 2.5 1.017 -0.037 4.48
TABLE V
FOURTH-ORDER BESSEL TRANSDUCER WITH LOSS
Layer  Thickness Resonance Impedance Loss
[MH?Z] [MRayl] a=x*f[Hz]
PZT 7.41 32.11 1.66 1074
Layer 1 6.35 7.89 6.54 1072
Layer 2 4.73 2.99 6.52 1078
Layer 3 4.51 1.91 6.54 1072
Backing na 6.00 na

are utilized, the (’s of the poles may be reduced at the
expense of power transfer efficiency [16]. To evaluate this
a Bessel filter (Gauss-like transfer) was synthesized using
three matching layers, each having loss, plus a finite backing
impedance. The target function is the reciprocal of a fourth-
order Bessel polynomial band-centered on 5 MHz, and having
90% fractional bandwidth. Using 19 target points, spaced
uniformly between the —6 dB (two-way) band edges, the
peak error was 0.2 dB. The algorithm adjusted a parameter
vector, 13, that included parameters for the thickness, loss,
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and impedance of all matching layers, as well as the backing
impedance. The resulting loop transfer function and transient
response are shown in Fig. 13, with parameter values given
in Table IV.

The transter function is essentially a zero error fit down to
—6 dB (two-way). The transient response is nearly a Gaussian
envelope times a carrier, with errors less than —40 dB of
the peak. Unfortunately, the transducer suffers from a transfer
efficiency of —11.8 dB due to the losses that were required.
However, this does prove that a great many polynomial
target functions may be achieved with the basic transducer
configuration.

IX. CONCLUSION

A modified Mason model for the transducer has been used
for exact analysis and design of transducer transfer functions
and/or transient responses using computer optimization. Clas-
sical filter theory applied to a lumped-element approximate
model indicated that transducer transfer functions have an all-
pole form (within the passband) determined by an appropriate
polynomial of order N to N + 1, where N is the number
of matching layers. A design methodology has been proposed
and numerically tested using computer optimization of layer
parameters to match the all-pole target polynomials. The
design methodology is applicable to an arbitrary number of
layers and poles.

5

of low-loss designs.

The design methodology was tested for a series of low-
loss designs using three polynomial transfer functions with
progressively wider bandwidths (and higher ripple factors).
It was observed that with increasing bandwidth, higher Q)
poles are required as a natural property of the low-loss
transducers. This tendency toward higher ) with greater
bandwidth requires that polynomials posses greater ripple to
achieve optimization. As bandwidth is reduced, lower order
polynomials are required. The significance of the backing loss
can be judged by comparing it to the transformed impedance
presented to the piezoelectric front face.

In general, the power transfer function is very efficient when
the mismatch in impedance scales between transmitter and
transducer is made small. This can be achieved by the use
of transformers, area scaling, multiple piezoelectric layers,
and other methods. The transducer transfer function may be
frequency scaled by thickness scaling all the layers.

The application of a second-order Fano bound predicts the
achievable bandwidth versus reflection coefficient performance
for this class of transducers. It was found that conventional
multilayer construction can achieve the optimal performance.
The test case was a lossless high-order Chebyshev design
exhibiting a 116% fractional bandwidth. It was demonstrated
that the inclusion of loss permits the design of a broad
range of pole configurations. The test case was a fourth-order
Bessel transfer function, with 90% fractional bandwidth and a
considerable transfer efficiency penalty.
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APPENDIX

Following Fano’s notation the reflection coefficient for the

low-pass filter in Fig. 10(b) is

1 1
S{S+— -
;o ( L, Co)
P = 1 2
S2a.9( = 4
N @a*%)*%m
The zero and poles of this rational function are
1 1
Mo =g

and

1 Cy
Apl2 = TCO ( + )

1 /C 2 2
— (21| - .
205 \ I L.Co

) |

Evaluating the Taylor coefficients using

00 1 k 2%
241 T 5 (Z AZEHT - Z AZrHt

7 %

The first and third coefficients are
2
CoRr

e (2 1[G 1
37 \GCyRy/) 4\ Iy 3/

These values can be inserted into the integral equations
assuming that a flat bandpass of bandwidth, from zero to f.,
is being integrated having a reflection coefficient dB(pmax),
expressed in decibels. The two equations to be satisfied are

AT =

and

o 1 —dB(pmax)
In ———— d2x f = 27 f, — —Pmax)
/0 ] 2 = P S Tog(e)
- g (A5° — 20,.) (13)
and
L ey 250 = 5 2R e
=T AT+ ). (14)
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The solution consists of eliminating the free variable o, and
solving for the roots of a third-order polynomial in dB(pmax ).
The solution is accomplished computationally with the results
given in the graph of Fig. 11, which is similar to Fano’s Fig. 7.
In the figure, dB(pmax) is expressed as a family of curves
plotted as a function of the normalized frequency variable,
27 f/AS°, and parameterized on values of —A$°/(A$°)3.
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