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Discussion of One-D Piezoelectric Transducer
Models with Loss

Glenn Whitworth, Member, IEEE

Abstract—Two, 1-dimensional piezoelectric transducer
models are presented that use complex numbers to repre-
sent mechanical and dielectric loss. Exact numerical agree-
ment was achieved by avoiding a number of small errors in
the literature. A correction to Kino’s simplified Mason par-
allel equivalent circuit is also given. Efficiency is discussed.

I. INTRODUCTION

HIEE SIMPLIFIED Mason cquivalent circuits described by

Kino [1] continuc to be accepted and used to provide
first-order approximation of piczoelectric transducers [2]. Other
widely recognized and more accurate 1-D piezoelectric trans-
ducer models include the (full) Mason model [3]-[5], the KLM
model [6], [7] implemented using the T-matrix formalism (8],
[9], and models based on a system of equations deduced from
Coursant [10], [11].

Section II of this article describes two computer models
based on the literature and gives the equations required for
them to be in exact mutual agreement. A number of small errors
in the literature are avoided. In Section I1I, one of these mod-
els is then numerically compared with Kino’s simplified Mason
cquivalent circuits, and a resulting disagreement is resolved.
Finally, efficiency is discussed. Each of these models was pro-
gramed in Mathcad7 Professional (MathSoft, Inc.) and run on
an Intel Pentium-based computer (Digital Equipment Corp.).

I1. PIRZOELECTRIC TRANSDUCER MODELS WITH LOSS

Two piezoclectric transducer models arc described in this
section starting with equations that are common to both. The
models represent a transducer with a single piezoelectric layer
and the option of acoustic matching layers. Bhatia [12] has
shown that acoustic loss can be represented using real frequency
and complex phase velocity. Mechanical and dielectric losses
will be included in the piezoeclectric layer through the use of a
complex stiffened wave speed v, and complex clamped capac-
itance Cp, respectively. The complex stiffened wave speed v,
may be represented by

N -1 .
Va R Ve * (1 — 25m> X Upg <1 + Qé'm) (1)

where Qum is the mechanical quality factor and v,e is the real
part of va. The propagation constant -y is given by
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Eq. (1) and (2) can be easily derived from [9, Table I], and the
relationship between attenuation o and Qy, is given by Q. =
7 f /avpe. The stiffened mechanical impedance Z. is given by

Zo = proA (3)

where p is the piezoclectric’s density and A is its area. When
mechanical loss is present, it is evident that Z; and v are both
complex. Similar equations would be used to represent the op-
tional acoustic matching layers with loss. The clamped capaci-
tance Cp may be represented by

_ er€0A
d

where e, is the relative clamped permittivity, ¢ is the per-
mittivity of free space, d is the thickness, and tand represents
the loss tangent. Eq. (1) and (4) provide convenient represen-
tations of loss, but they may be modified to better model the
loss of specific materials [12]. Two models that will use these
equations will now be described.

Co

[t — j tan(8)] (4)

A. Model 1

Model 1 is based on the matrix from Dion et al. [11, eq. (1)]
or equivalently, Rhyne [5, eq. (1)]. The 3 x 3 matrix was con-
verted into 2- x 2-form by basic algebraic manipulation. A
resulting matrix Myoea1 , which represents the transfer function
of the transducer, is given by

Miotar = M17" - M2 - Mron: (5)
where
M1 = r G'—H - F
TR + an,(:kin_q GQ — H - (E + Zbrlcking) ? (6.(1)
G -G (F-E)
M2 =
,:0 -G (E + Zbuc/cing - F)jl ’ (ﬁb)
E=Z./tanh(y d), F=Z./sinh(yd), (7a)
G=h/(G-2nf),and H=1/(j-2rf Co). (7b)

Zpacking 15 the mechanical impedance of the backing and Miont
may be used to represent the option of acoustic matching layers.
Additional expressions necessary for using the T-matrix for-
malism to calculate various results are presented by Oakley [9].
Model 1 was tested at a variety of frequencies and acoustic
loads, with and without mechanical and dielectric loss. It was
found to have a singularity at the parallel resonance frequency
for the (physically impossible) casc of no internal loss. Except
near this point, the transducer input impedance was found to
be in exact agreement with [11, eq. (6)]. (The word “exact” will
be used in this article to mean at least 15 significant digits of
agrecment.) With loss, the agreement at and necar the parallel
resonance frequency was extremely close and so also supports
the view that this model is analytically correct.
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B. Model 2

Model 2 is a KLM model. (For a complete description of
the KLM model with similar notation see Oakley [9] or Zip-
paro et al. [7].) The expression used for the clectromechanical
transformer turns ratio was

h . /
D =—r .sinc| —
2fr 7 (%)

where h is the stress piezoelectric constant. The directionality
of the ratio @ is such that the appropriate matrix for use in the
T-matrix formalism is

d 0

0@

The acoustically unloaded, fundamental, parallel resonance fre-
quency f}, of the piezoelectric is given by

(8a)

(8b)

Vq

=2 9

fo=15s ©)

and so it is evident that f, must be complex when mechanical
loss is present. The following series capacitance C’ was used:

TV
T R2-sine(f/fp)

At all tested frequencies including f,,, with and without me-
chanical and diclectric loss, Model 2 was found to produce nu-
merical results that were in cxact agreement with [11, eq. (6)].
Model 2 calculates somewhat faster than Model 1 and also has
no singularity at f,. Model 1 was easier to debug and will also
better facilitate discussion of loss mechanisms.

The validated KLLM implementation, Model 2, will next be
compared with the simplified Mason equivalent circuits. These
comparisons require a relationship between h and the thickness
coupling constant kt. The following relation was used:

}L = kT —2‘/214(: .
V 20

1II. TuE SIMPLIFIED MASON EQUIVALENT CIRCUITS

c’ (10)

(11)

Two simplified Mason cquivalent circuits arc given by
Kino [1] and restated by Mills and Smith [2]. One is a se-
ries cquivalent circuit, and the other is a parallel cquivalent
circuit; they are approximate solutions valid only near the par-
allel and series resonances, respectively. Kino [1] and Mills and
Smith [2] disagree as to which circuit should be called series and
which parallel. Neither circuit includes mechanical or dielectric
loss. The series equivalent circuit {[1, Fig. 1.4.9¢] or [2, Fig. 1
(right)]} was found to be in exact agrcement with Model 2 at
f,. But the parallel equivalent circuit {[1, Fig. 1.4.11b] or [2,
Iig. 1 (left)]} showed significant disagrcement with Model 2
when compared at f.

A simple example will now be chosen to demonstrate the
problem. The example is a piezoelectric plate radiating from
both faces into media with mechanical impedances Z; and Zs.
The properties are arbitrarily chosen to be Cy = 2.849 nI, d
=1mm, A = 5.067 x 107* m?, v, = 4600 m/s, kr = 0.481,
Zo/A = 34.5 MRayl, Z1 /A = 4 MRayl, and Z2 /A = 8 MRayl.
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A comparison was made with Model 2 at the serics reso-
nance frequency fs. The well-known relationship among f, fp,
and kr, given by [7, cq. (5)], was used to calculate fs. Approx-
imate calculated valucs for f, and f; are 2.3 and 2.06 MHz,
respectively.

At {,, the parallel equivalent circuit predicts an electrical
conductance of 31.252 mS, but Model 2 predicts a conductance
of 34.870 mS. This error of more than 10% can be almost elim-
inated by changing the resistance of the equivalent circuit’s
motional branch to read

7T-(Z| +Z2)

R=1 21T 22
Ak2wpCaZ.

(12)

The only change made here is that w, has been replaced with
wy (notwithstanding the fact that we are interested in the series
resonance). Eq. (12) predicts a conductance at fs of 34.867 mS.
Disagreement with Model 2 is now less than 0.01%. The mo-
tional resistance (if expressed in terms of h) is now also in an-
alytical agreemoent with Gooberman [4, Fig. 3.12]. The parallel
equivalent circuit remains an approximation, however, and is
still only valid near the series resonance.

IV. DrscussioN AND CONCLUSIONS

Kino [1] and Gooberman [4] each present a simplified Ma-
son parallel equivalent circuit, but they disagree. Kino’s version
has propagated in the literature and has been used to calculate
impedance at the series resonance [2]. Eq. (12) was obtained
by changing a single subscript in Kino’s motional resistance
term. When applied to a typical example, this modification
was shown to reduce error by a factor of over 1000 at the series
resonance. This modification is also analytically supported by
Gooberman’s work [4], which agrecs that the motional resis-
tance term is correctly given by (12).

To facilitatc the process of cross-checking and debugging
new simulation programs, two models were presented in Sec-
tion IT that have been tested to be in exact numerical agree-
ment. Mechanical loss was introduced through the complex
stiffened wave speed va., while using a real frequency f. Agree-
ment between models was achieved when f},, Z., and ~, which
arc all functions of v,, were all treated as complex. To repre-
sent diclectric loss, Cp was treated as complex. With reference
to (7) of Model 1, it is evident that mechanical loss is intro-
duced through terms E and I*, and dielectric loss of the clamped
capacitance is introduced through term H. An additional influ-
ence on efficiency is introduced through the piezoelectric term
G if h is complex. (Efficiency is being defined as the ratio of out-
put acoustic power to the transducer’s input electrical power.)

There is a final pitfall to be avoided when applying these
models. Simulations support the assertion that, if h is real,
then the predicted efficiency will never exceed 100% with any
combination of positive values for tan § and Q. But, in the
literature, it is not uncommon for transducer models to be ex-
pressed directly in terms of kr rather than h, and so kq is often
approximated by a real number. To avoid unintended results,
one should be carcful when using approximate or hypothetical
material properties. For example, simulations show that, if a
real kt is used to model a hypothctical transducer that has di-
electric loss but negligible mechanical loss, then a nonsensical
prediction of over 100% efficiency will result.
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APPENDIX A

This is a list of small disagreements with otherwise excellent

articles.

o Eq. (1) and (2) are omitted by [7] and disagree with [9, eq.
®)

« Eq. (3) disagrees with [9, eq. (9)].

« For (8a) and (8b), [1], [7], and [9] use diagrams to define
the ratio ®. The diagrams agree, but the ® of [7] is the
reciprocal of [1] and [9].

« Eq. (9) disagrees with [7] and [9], who both treat f,, as real.

« Eq. (10) disagrees with [7, eq. (2)], which has a wrong sign,
and with [9, eq. (6)], which has a misplaced sinc().

« Eq. (11) disagrees with an unnumbered equation in [5, p.
1137).

o Eq. (12) disagrees with [1, Fig. 1.4.11b] and disagrecs
with [2, Fig. 1 (left)].
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